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Abstract 

This paper presents an overview of quantitative and qualitative approaches to assessing the cyber resilience of 

distributed energy resource (DER) systems, focusing on the integration of KPI indicators, adaptive AI metrics and 

international security frameworks. A comprehensive resilience analysis model is proposed that combines three 

assessment levels: technical, organizational and adaptive. In the technical aspect, classic KPIs such as MTTD, 

MTTR, Detection Rate and Crypto Coverage are used, which measure the speed of detection and response to 

incidents. The organizational level includes indicators for readiness and recovery, while the adaptive level 

introduces AI-based indices such as Cyber Resilience Index (CRI), Mean Time to Adapt (MTTA) and 

Reinforcement Learning Adaptation Efficiency (RAE). These metrics allow for a dynamic comparison of the level 

of protection and the effectiveness of response to cyber incidents in microgrids, hybrid RES systems and digitally 

connected DER infrastructures. The proposed methodology supports the transition from reactive to proactive 

cyber resilience by connecting measurable technical data with artificial intelligence for predictive assessment and 

adaptive security optimization. 
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INTRODUCTION 

The rapid adoption of Distributed Energy 

Resources (DER), such as photovoltaic 

systems, wind turbines, batteries and smart 

controllers, is fundamentally changing the 

way power grids are managed. These 

systems, connected through communication 

networks, IoT platforms and SCADA 

systems, provide high flexibility and 

efficiency, but at the same time expand the 

attack surface and require a new level of 

cyber resilience [1-4]. 

Cyber resilience is defined as the ability 

of a system to anticipate, withstand, recover 

and adapt after cyber attacks or failures. 

Unlike classic cybersecurity, which focuses 

on preventing breaches, cyber resilience 

measures the functional continuity and speed 

of recovery after an incident. In the context 

of DER infrastructures, this means 

maintaining energy availability and control 

stability even in the event of a partial loss of 

communication, a compromised gateway or 

malicious interference with data from 

sensors and inverters. 

As the interconnections between 

Operational Technology (OT) and IT 

systems increase, the need for quantitative 

resilience assessment becomes critical. 

Traditional security approaches based on 

static policies and audits are not sufficient 

for the dynamic environment of DER, where 

dozens of devices, protocols and cloud 

services interact in real time [5,6]. 

An integrated model that combines 

technical indicators (KPIs), organizational 

processes and adaptive AI metrics is needed 

to determine the real level of resilience and 

readiness for response. 
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This article presents an overview of 

methods and indicators for quantitative and 

qualitative assessment of cyber resilience of 

DER systems. A multi-level approach is 

proposed, including: technical level, 

assessment of detection and response speed 

Mean Time To Detect (MTTD), Mean Time 

To Respond (MTTR), Detection Rate; 

organizational level, measurement of 

readiness and procedural efficiency (Backup 

Rate, Patch Compliance); adaptive level, 

introduction of AI-based metrics such as 

Cyber Resilience Index (CRI), Mean Time 

to Adapt (MTTA) and Reinforcement 

Learning Adaptation Efficiency (RAE) [7]. 

The aim is to propose a unified 

framework for measuring the resilience of 

DER networks, allowing comparison 

between different systems, scenarios and 

technologies. This framework supports the 

transition from reactive to proactive 

protection, based on intelligent monitoring 

and self-learning mechanisms for adaptation 

to new threats [8]. 

CONCEPT AND METHODOLOGICAL 

FOUNDATIONS OF CYBER 

RESILIENCE 

Cyber resilience in energy systems is 

considered as the ability of the infrastructure 

to maintain critical functions, regardless of 

the presence of cyber incidents, failures or 

malicious impacts. In contrast to traditional 

cybersecurity, which aims to prevent attacks, 

cyber resilience measures the capacity of the 

system to withstand, recover and adapt after 

a breach or disturbance. 

According to the definitions, a resilient 

system must perform four sequential 

functions: Anticipate, identifying threats and 

vulnerabilities through risk analysis and 

scenario modeling; Withstand, ensuring 

continuity through architectural 

segmentation, redundancy and 

cryptographic protection; Recover, restoring 

functionality through backups, DRP and 

playbook response; Adapt, improving 

measures based on accumulated data, 

training and AI analysis. 

This four-phase framework corresponds 

to the security lifecycle, where the Identify–

Protect–Detect–Respond–Recover stages 

form a continuous improvement process. 

DERs are cyber-physical systems (CPS) 

in which electrical, communication and 

management infrastructure are 

interconnected. This integration provides 

operational efficiency, but also leads to a 

new type of vulnerability, as compromising 

digital communications can directly affect 

physical processes. Examples include: 

telemetry manipulation between inverter and 

SCADA; time synchronization substitution 

(PTP spoofing) leading to erroneous 

protection actions; malicious firmware 

updates via cloud interfaces. 

Therefore, the resilience of DER systems 

requires the simultaneous provision of 

physical, communication and logical 

protection. 

The assessment of DER cyber resilience 

can be formalized through three main levels 

presented in Table 1. 

Table 1 Assessment model of DER cyber 

resilience 

Assessment 

Level 

Focus Metric Type 

Technical Speed and 

efficiency of 

detection, 

response and 

recovery 

KPI: MTTD, 

MTTR, 

Detection 

Rate, Crypto 

Coverage 

Organizational Policies, 

training, 

procedures 

and incident 

management 

KPI: Backup 

Success 

Rate, Patch 

Compliance, 

Tested 

Playbooks 

Adaptive 

(intelligent) 

Self-

learning and 

dynamic 

optimization 

through AI 

Metrics: 

CRI, 

MTTA, 

RAE, ASI 

This three-tier model combines 

quantitative measurements (KPIs) and 

qualitative indices of adaptability, providing 

a balanced assessment of the real resilience 

of the system. 
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Modern regulatory requirements, place 

cyber resilience at the center of critical 

infrastructure management. They 

recommend integrating: systematic risk 

management (risk-based security 

management); measurable performance 

indicators (performance monitoring); 

continuous improvement processes. 

In the context of DER, this means 

building a dynamic monitoring system that 

can measure resilience not only statically, 

but also over time through automatic 

collection and analysis of KPIs and AI 

metrics. 

METHODOLOGY AND MODEL FOR 

QUANTITATIVE ASSESSMENT OF 

CYBER RESILIENCE 

The aim of the proposed method is to 

provide an objective and comparable 

assessment of the cyber resilience of 

distributed energy resource (DER) systems 

by combining operational KPIs, 

organizational indicators and adaptive AI 

metrics. The method allows both 

quantitative measurement of the current state 

and dynamic tracking of trends when threats, 

policies or architecture change. 

The assessment process consists of five 

main stages: Identification of assets and 

critical flows, determination of key 

components in the DER infrastructure 

(inverters, SCADA, communication 

gateways, cloud platforms). Data collection, 

extraction of operational logs, IDS alarms, 

update indicators and access events. 

Calculation of KPIs and AI metrics, use of 

standardized formulas for MTTD, MTTR, 

Detection Rate, etc. Normalization and 

weighting, transformation of all values to the 

range [0,1] and setting weights according to 

criticality. Calculation of a composite Cyber 

Resilience Index (CRI), a summary value 

indicating the overall level of readiness and 

adaptability. 

They are calculated by: 

emergence( )findt t
MTTD

N

−
=


(1) 

recovery find( )t t
MTTR

N

−
=
 (2) 

100%
find

total

N
DR

N
=  (3) 

false alarms

total alarms

100%
N

N
FPR =   (4) 

Since different indicators have different 

scales, all values need to be normalized in 

the interval [0,1]: 

min

max min

1 i

i

X X
N

X X

−
= −

−
(5) 

After normalization, weights i are 

assigned, reflecting the priorities of the 

organization, presented in Table 3. 

Table 2 Weighted indices 

Group Weight 

Technical KPIs 0.4 

Organizational KPIs 0.3 

Adaptive AI Metrics 0.3 

The combined CRI index is calculated as 

a weighted sum of the normalized metrics: 

1

n

i i
i

CRI N
=

=   (6) 

where: 

• Ni is the normalized value of the

indicator;

• i – the weight determined 

according to the priority; 

• n – the number of indicators

included.

It is possible to extend the model through 

a dynamic version of the index, which also 

includes a rate of change (adaptability): 

dyn

dCRI
CRI CRI

dt
= + (7) 

The parameter α reflects the sensitivity to 

the rate of adaptation (measured by MTTA 

and RAE). 

The interpretation scale is presented in 

Table 3 
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The calculated CRI can be mapped to the 

security levels in IEC 62443 (SL1–SL4) or 

to the C2M2 maturity levels presented in 

Table 4. 

Thus, the CRI index can be used as a 

unified tool for assessing compliance with 

international standards and regulatory 

requirements. 

Table 3 Rating ranges 
CRI 

Value 

Interpretation System Status 

0.90 – 

1.00 

Excellent 

cyber 

resilience 

Autonomous 

adaptive protection, 

low risk 

0.75 – 

0.89 

Good 

resilience 

Timely response 

and effective 

recovery 

0.60 – 

0.74 

Medium 

resilience 

Partial control, 

needs optimization 

< 0.60 Low 

resilience 

High risk of 

impaired 

functionality 

Table 4 CRI index metric 
CRI 

range 

IEC 62443 SL C2M2 Maturity 

Level 

0.90–

1.00 

SL 4 

(Resilient) 

Level 5 – 

Optimized 

0.75–

0.89 

SL 3 (Secure) Level 4 – 

Managed 

0.60–

0.74 

SL 2 

(Controlled) 

Level 3 – 

Defined 

<0.60 SL 1 (Initial) Level 1–2 – Ad 

hoc/Repeatable 

CYBER RESILIENCE ASSESSMENT 

OF A DER MICROGRID 

The studied system is a smart microgrid, 

consisting of: Photovoltaic plant (300 kW), 

controlled by inverters with Modbus/TCP 

profile; Battery pack (150 kWh, Li-ion) with 

local EMS controller; SCADA/EMS system, 

with organized central server for monitoring 

and management; MQTT broker and OPC 

UA gateway connecting field devices with a 

cloud VPP aggregator; Communication 

environment, IP-based local area network 

with TLS protection and IDS/IPS module 

(Suricata). 

The microgrid operates autonomously in 

normal mode, but maintains a two-way 

connection with the aggregator for 

forecasting and energy trading. 

The assessment is performed under three 

realistic scenarios: 

• Scenario A, base mode (without AI

protection): traditional segmentation,

cryptographic protection, without

adaptive monitoring.

• Scenario B, with IDS/IPS and SIEM:

added event correlation and automatic

notification.

• Scenario C, with ML-based adaptive

model (RL agent): system with

Reinforcement Learning agent that

optimizes access policies and response

to detected anomalies.

After two weeks of monitoring, the 

average values reported for the main metrics 

are presented in Table 5 and Table 6. 

Table 5 Average values reported for the main 

metrics 

Metric Scenar

io A 

Scenar

io B 

Scenar

io C 

(AI) 

Unit

s 

MTTD 140 45 15 min 

MTTR 210 80 35 min 

Detection 

Rate 
0.72 0.89 0.95 - 

False 

Positive 

Rate 

0.18 0.10 0.06 - 

Patch 

Complian

ce 

0.80 0.85 0.92 - 

Backup 

Success 

Rate 

0.75 0.86 0.93 - 

MTTA 
- - 0.30 

hou

rs 

RAE - - 0.85 - 
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Table 6 Calculated CRI values 

Scenario CRI (0–1) Interpretation 

A 0.63 

Average resilience – 

reactive protection, 

high response time 

B 0.78 

Good resilience – 

timely detection and 

recovery 

C 0.91 

Excellent resilience – 

autonomous 

adaptation, low 

MTTR 

The implementation of ML-based 

adaptive protection improves the overall 

cyber resilience index by about 45% 

compared to the baseline architecture. 

The detection time (MTTD) is reduced by 

almost nine times when introducing an RL 

agent that analyzes the correlation between 

traffic and events in real time. The mean 

time to recovery (MTTR) is reduced from 

210 to 35 minutes thanks to automated 

SOAR playbooks. The Detection Rate 

increases from 72% to 95%, and the False 

Positive Rate drops below 6%, 

demonstrating the effectiveness of the AI 

model. Patch and Backup metrics are also 

improved due to integration with a 

centralized update management system. 

RAE = 0.85 indicates high efficiency of the 

RL agent training against real incidents. 

This targeted example confirms that 

quantitative assessment through KPI and 

CRI index allows not only measurement, but 

also optimization of resilience in a real DER 

microgrid. AI-based models provide 

dynamic adaptation to new types of attacks 

and minimize human intervention in incident 

response. The methodology can be used as a 

tool for: monitoring cyber resilience over 

time; assessing the impact of new policies or 

technologies; maintaining compliance with 

standards. 

CONCLUSION 

The presented work considers an 

integrated model for quantitative and 

qualitative assessment of cyber resilience of 

distributed energy resource (DER) systems, 

which combines technical KPIs, 

organizational indicators and adaptive AI 

metrics in a single analytical framework. 

The developed methodology allows not only 

measurement, but also comparison of 

resilience between different architectures 

and technologies in microgrids, based on 

standards. 

The results of the targeted example show 

that the integration of AI/ML-based adaptive 

mechanisms can increase the value of the 

Cyber Resilience Index (CRI) by over 40%, 

significantly reducing the time to detection 

(MTTD) and recovery (MTTR) after 

incidents. This confirms that the 

combination of monitoring, automation and 

self-learning is key to building a resilient 

energy infrastructure. 

The proposed approach represents a step 

towards an objective, measurable and 

automated assessment of cyber resilience in 

the context of smart energy systems and can 

serve as a basis for future standards and 

regulatory requirements in the renewable 

energy and microgrid sectors. 
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