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Abstract

The aim of this paper is to give representations of generalized inverses of a linear combination of generalized and
hypergeneralized projectors. We discuss structural properties of these projectors that make such representations
possible and analyze explicit conditions for the existence of generalized inverses. Furthermore, we provide a brief
overview of known results concerning generalized inverses in the context of projectors and emphasize the
importance of such representations in matrix theory. Special attention is devoted to the structural properties of
generalized and hypergeneralized projectors, which allow the derivation of explicit formulas for their linear
combinations. Our analysis highlights connections with linear algebra, while the results may also find applications

in numerical methods and related areas.
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INTRODUCTION

Let C™™ denote the set of all n X m
complex matrices. For a matrix A € C"™*™,
the symbols A%, R(A) and r (A) will stand for
the conjugate transpose matrix, range and
rank of A, respectively. The symbol C}*™
will stand for the set of all matrices from
C™*™ with a rank 7.
By I, and @ we will represent the identity
matrix of order n and direct sum,
respectively.
The matrix P € C™" satisfying P2 = P is
called the projector (the idempotent matrix),
until the matrix P € C"*" satisfying P? =
P = P* is called the orthogonal projector. Pg
denotes the orthogonal projector onto
subspace S.
The Moore-Penrose inverse of A is the
unique matrix AT satisfying the equations:

(1) AATA = A, (2) ATAAT = AT,
(3) (AAN)* = AAT, (4) (ATA)" = ATA.

The EP matrix (the range-Hermitian matrix)
is the matrix A € C™" such that ATA =
A AT, ie. R(A) = R(4").
The index of a matrix A € C™*™, is the
smallest nonnegative integer k such that
r(Ak*1) = r(4%), denoted by Ind(A). For
AeC™" Ind(A) =k, the matrix X €
C™*Mgatisfying

(1%)AkXA = Ak, (2)XAX = X,

(5) XA = AX

is called the Drazin inverse of A and is
denoted by X = A%. If Ind(A) = 1, then this
special case of the Drazin inverse is known
as the group inverse and is denoted by A*.
In 1997, Grop and Trenkler [1] introduced
generalized and hypergeneralized
projectors: the generalized projector is a
square matrix such that A?> = A* and the
hypergenerelized projector is a square
matrix such that 42 = AT.
We use the notations CEP, CGP, CHEP for the
subsets of C™*™ consisting of EP (range-
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Hermitian) matrices, generalized, and
hypergeneralized projectors, respectively.
By definition of the Moore-Penrose inverse,
the group inverse and the Drazin inverse, it
is easy to see that if A is the generalized or
the hypergeneralized projector, then AT =
A% = A*.  Therefore, the presented
generalized inverses coincide.

In [2-7], different properties of
generalized and hypergeneralized projector
are given. Inspired by the aforementioned
results, particularly the papers [5] and [7],
we present some representations of
generalized inverses of linear combinations
of these classes of matrices.

EXPOSITION

There are different forms of generalized
and hypergeneralized projectors.
Among the wuseful representations of
generalized and hypergeneralized
projectors, the following is particularly
noteworthy: any generalized projector A €
C™™ can be expressed as

A =Udiag(A4, 1, ..., 1)U,

where U is a unitary matrix and A; €

{0,1, w,w}, where w =e3, are the
eigenvalues of A. In the case of
hypergeneralized projectors, A € CH¢P if
and only if

A=UK@0o)U~,
where U* = U™ and K € C"™" is such that
K3 = I,.. From the above representations it is
obvious that any generalized projector is a
hypergeneralized projector.
Using the given forms of generalized and
hypergeneralized projectors, one can derive
representations of the generalized inverses
of a linear combination of these projectors.
The form of the Moore—Penrose inverse, that
1s, the group inverse of a linear combination
of two commuting generalized or
hypergeneralized projectors, can then be
determined.

21

Theorem 1. [5] Let A € C"*™ and B € C™*"
be commuting generalized or
hypergeneralized projectors, and let ¢4, ¢, €
C\ {0} and ¢ + ¢ # 0. Then

22)  (aA+eB) = = (c7A%B® -
1 2

C1C2AB + c3A3B?) + —A2(I, — B®) +

1
1
EBZ(In—AB’) . (1)
Furthermore, c;A + c,B is nonsingular if
and only if n =rank(A)+ rank(B) —

rank(AB) and in this case (¢c;A + ¢,B)™!
is given by (1).

As a corollary, we get that in the case when
A is generalized or hypergeneralized
projector and c¢q,¢c, € C,c; # 0,63 + ¢35 #
0, a linear combination ¢, 1, + c,A is always
nonsingular.

Theorem 2. [5] Let A€ C™™ be a
generalized or hypergeneralized projector,
c1,¢3 € C,cy # 0,6 + ¢ # 0.Thency 1, +
¢, A is nonsingular and

(crl, + c,A)™t = —— (243 — c;c,A +
3

c3+c3

1
342 + =l — 4%).

If we consider a finite commuting family
{A;}%, where all of the members are
generalized or hypergeneralized projector.
Hence, we have the following results.

Proposition 3. [5] Let all of A; € C™",i =
{1,...,m} be commuting generalized or
hypergeneralized projectors, c{, ¢, € C,cq #
0,c3+c3+0 and ky,..,k, €N. Then

ki . .
c1ly + ¢ [[i21 A;" is nonsingular.

With the additional requirements of
Theorem 1 it is possible to give precise form
of Moore-Penrose inverse, i.e., the group
inverse.

Corollary 4. [5] Let ¢;,c, € C\ {0}. If A, B
are commuting generalized or
hypergeneralized projectors such that AB =
0, then

(c,A+ c,B)t =242 + 1 B2,
C1 Co

In the next result, we present the form of
Moore-Penrose inverse, i.e., the group
inverse of ¢;A™ + c,A*, where m,k € N
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and A is generalized or hypergeneralized
projector. It is a corollary of Theorem 1.

Corollary 5. [5] Let A€ CH™ be a
generalized or hypergeneralized projector
andaletcy,c; €C,c3+c3 #0and mk €
N. Then

1
(ClAm + CzAk)T = m (Clezm -
1 2
C1C, AR + ¢, A%K),
A3, t=30,
where A =<{ A, t=5; 1. Furthermore,
A%, t =32

c;A™ + ¢, A¥ is noonsingular if and only if
A is nonsingular and in this case the inverse
of c;A™ + c,AF is given by (c;A™ +

kN—1 _ 1 2 r
CRAF)T = pET (cTAP — 1A% + A7),
1 2

where 2m =3 p,m + k =5 q and 2k =5 7.

In particular, the form of the Moore—Penrose
inverse, i.e., the group inverse of the linear
combination ¢; A + ¢, A", can be specified.

Corollary 6. [5] Let A€ CH™ be a
generalized projector and let ¢; ¢, € C, cf +
c3 # 0. Then

(1A + AT =

c2A).

1 242 3
cfA” — cicA° +
Cf Cg(l 1%2

Let us recall that for the matrices 4,B €
C™ ™, a matrix A is less than or equal to B
with respect to the star partial ordering if
A*A = A*B and AA* = BA*. If A € CEP,
then for any B € C™*™, A is less than or
equal to B with respect to the star partial
ordering if and only if AB = A? = BA.

In the next theorem, we present the form of
Moore-Penrose inverse, i.e., the group
inverse of ¢;A™ + c,B¥ under the condition
that A, B are generalized or hypergeneralized
projectors and AB = BA = A?. Remark that
the same result holds if we suppose that 4, B
are generalized projectors such that B — A €
CEP; or A € CEP, B € CHGP such that A is
less than or equal to B with respect to the star
partial ordering.

Theorem 7. [5] Let ¢;,¢c, € C, ¢, # 0, ¢3 +
c3#0 and mkeN. If A€ C¥™ are
generalized or hypergeneralized projectors

such that AB = BA = A?, then
1

(2.4)  (c1A™ + ¢;BM)T = — (c7A*™ -
C1+CZ
C C, A™HK 4 242K C—12B2"(In — A43),
A3, t=30
where At =4 A, t=31 and BS =
A%, t=;32
B3, s=30
B, s=31 .
B?, s=;32

In the following result, the form of the
Moore—Penrose inverse, i.e., the group
inverse of the linear combination
A™(c A* + c,BY), can be given.

Theorem 8. [5] Let A € C}*™ and B € C™*"
be commuting hypergeneralized projectors.
Let ¢, €C\{0}L,ci+c3#0 and
m, k,l € N. Then

[A™ (c14% + 2 BD]T = —— (c242m+h) —
1 2
¢ AR Bl 4 c243B2) +
CiAZ(m+k)(In _ B3),
1

A3, t=50

where A ={A, t=5;1 and BS =
A%, t=;2

B3 s=;0

B, s=31 .

B?, s=;2

Another form of generalized and
hypergeneralized projectors can be stated as
follows. Any generalized projector A €

C**™ can be represented by

_ K 01,,«
A=Ul 0] U, (1)
where U € C™™ is unitary and K € C™*" is

such that K3 =1, and K* =K1 Any
hypergeneralized projector A € C*™ has a

form
A= U[ZOK g]U*,
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where  UeC™™ is  unitary, ) =
diag (011r1; . atlrt) is a diagonal matrix of
singular values of A,0; >0y > - > 0, >
O,ry+r,+-+r,=r and KeC™
satisfies (YK)® = I and KK* = I,..

Using these forms, further representations of
the Moore—Penrose inverse, i.e., the group
inverse of a linear combination of
generalized and hypergeneralized
projectors, can be expressed.

First, a representation of the Moore—Penrose
inverse, 1.e., the group inverse is given in the
case of commuting generalized projectors or
hypergeneralized projectors.

Theorem 9 [7] Let A € C**™ and B € C™*"
be commuting generalized projectors or
commuting hypergeneralized projectors, and
letm,k €N, cy,c, €EC\{0}andc} +c; #
0. Then

(c;A™ + c,BF)T = (c;A™ + c,AATB¥)T +
c; (I, — AAT)(B¥)2.

When the product of generalized or
hypergeneralized projectors equals zero, the
following representation of their linear
combination is derived.

Theorem 10. [7] Let m,k € N, ¢;,¢c, € C\
{0}. If A,B € CSF or A, B € CHEP such that
AB = 0 = BA, then

(c;A™ + c,BF)T = c71(A™)? + c; 1(B*)2.

Another form of the Moore—Penrose inverse,
i.e., the group inverse for the linear
combination c; A™ + c,A* of generalized or
hypergeneralized projectors is presented in
the following proposition.

Theorem 11. [7] Let A€ CH™ be a
generalized or hypergeneralized projector
and let c;,c, €C, ¢34+ ¢33 #0 and mk €
N. Then

1
(AT + AT = 3+c3

c2(AF)? — ¢ c, AMA].

[cf(A™)* +

The next theorem provides another form of
Moore-Penrose inverse, 1i.e., the group
inverse of ¢;A™ + c,B¥ under the condition

that A, B are generalized or hypergeneralized
projectors such that AB = BA = A?

Theorem 12. [7] Letcy, ¢, € C,cy # 0,¢3 +
c;#0and mk€eN.IfA€ CP™ and B €
C™™™ be generalized projectors such that
B—A€cCS? or Ae CEP, B € CHSP such
that A is less than or equal to B, then

(c1A™ + ¢,BR)t = < [c2(4™)? +

c3+c3
c2(A%)% — c;c, AMAR] + ;1T -
AAT)(BF)Z.

In the following result, we derive the form of
the Moore—Penrose inverse, i.e., the group
inverse, of the linear combination
A™(c A¥ + c,BY).

Theorem 13. Let A € C**™ and B € C™*" be
commuting hypergeneralized projectors. Let
c1,c; EC\{0},c3+c3#0 and mk,l€
N. Then

[A™(c,AF + c,BD]T = (A™)T(c, A% +

c,AATBYT + 711, — AATY(BHT. (2)
Proof. We suppose that A € C**™ and B are
generalized projectors (the following
reasoning works if A, B  are
hypergeneralized projectors) and that A has
the form (1). Since AB = BA, we get that B
has the following form

D 07,
A=U 0 G] U,
where U € C™™ is unitary, K € C™*" is the
generalized projector such that KD = DK,
and G € C**(=7) s the generalized
projector. Then
A™(c, A% + ¢, BY)
_y IKm(clK" +c,DH 0 ll U

0 c,G
where
L, m=30
Km={K m=31,
K?m=52
PR(D)'Z =3 0
D'=! D, =51,
D? l=32
and
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PR((;),Z =3 0
G'={ G, 1l=51.
G? l=32

Since D3 is an orthogonal projector and
(c1K®)3 + (c,DH3 = 31, + c3D3, we get
that (c;K*)3 + (c,D")? is nonsingular for
all constants ¢y, c, € C\ {0} such that ¢ +
c3 # 0. From the invertibility of (¢, K*)3 +
(c,DYH3, it follows that c;K* + c,D is
nonsingular. Now,

A™(c, A* + c,BHT

_u [K‘m(cll{" +c,DH1 0 lU*‘

0 c; 1 (GHT
(3)
where
PR(G)ll =3 0
(GHT = G*, =31
G, l=;2
Since
L. 0
T — T *
AAt = U [0 0] u*,
and

0 0
— T = *
In AA U [0 In_r] U )

then the form (3) is equivalent to the form
(2). This completes the proof.

Example 1. Let 4, B € C3*3 be defined by

[1 0 O]

A=1[0 0 0]

0 0 0.

[0 0 O]

B=[0 1 0]

0 0 Ol
a=2c=1m=I1l=k=1.

By direct calculation, we obtain A2 = AT =
A, B> = BT = B, hence, A, B € CHSP. Also,
AB = 0 = BA. Now,

2 0 0
AA+B)=24=]0 0 ol
000

First, we will apply Theorem 8.
1

Since, c; 1 = 1, AAT = 4, (24)T = 5

0 0 O
0 0 1
we obtain

1
gt fz 0°
A(A+AATB)T =-A =
A4+ ) 2 0 0 0f
0 0 O
0 0 O
;'3 —AANDBY =10 1 0|=B8,
0 00
1
i1 2 00
[A(2A + B)] —§A+B— o 1 ol
0 0 O
On the other hand, by Theorem 13, we have

2A+ AATB=2A+AB =2A+0

2 00
=10 0 0
0 00
1
(ZA)T=§A,
c; (I3 — AAN)BT = (I; — A)B = B,
1
iz 00
[AQA+ B)]T = 5 1 ol
0 0O

The Moore—Penrose inverse according to
Theorem 13 for this example is identical to
the result obtained from Theorem 8.

CONCLUSION
In this paper, representations of
generalized inverses for the linear

combinations of  generalized and
hypergeneralized projectors have been
studied. Structural properties of these
projectors that allow such representations
were analyzed, and explicit forms for the
Moore—Penrose inverse (group inverse)
were derived for certain combinations of
commuting projectors. The results highlight
connections with linear algebra and provide
formulas that may be useful in numerical
computations and related applications.
Future work could explore extensions to
non-commuting  projectors,  weighted
inverses, or other generalized inverse types,
as well as potential applications in
computational methods and matrix theory.
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