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Abstract

This report details the design, modeling, and simulation of a Single-Cycle MIPS Microarchitecture using the
VHDL hardware description language. The primary objective of this project is to create a robust and
pedagogically effective model suitable for use as an educational tool in introductory Computer Architecture and
Organization courses.

The work focuses on implementing a Reduced Instruction Set Computing (RISC) approach, specifically covering
a critical subset of the MIPS Instruction Set Architecture (ISA), including R-type, I-type, and basic control flow
instructions. The single-cycle design was chosen for its straightforward pipeline-less operation, which facilitates
the clear understanding and visualization of the core execution phases: Instruction Fetch, Decode, Execute,
Memory Access, and Write Back.

The document provides an in-depth analysis of the main functional blocks—the Program Counter (PC), the
Register File, the Arithmetic Logic Unit (ALU), and the Control Unit—and demonstrates their seamless integration
within the Datapath. The VHDL implementation is verified through extensive testbenches, generating precise
timing diagrams that confirm functional correctness and serve as illustrative examples for students. The resulting
model successfully bridges the gap between theoretical knowledge and practical hardware implementation,

making complex processor concepts accessible to learners.
Keywords: MIPS Microarchitecture, Single-Cycle, VHDL, Educational Tool, Computer Architectures.

INTRODUCTION

The study of Computer Architecture and
Organization is fundamental to understanding
how modern computing systems operate [1].
At the core of any digital system lies the
processor, a complex component whose inner
workings are often challenging for students to
grasp solely through abstract theory. This
difficulty stems from the need to correlate
high-level programming constructs with low-
level hardware mechanisms [2].

To bridge this gap between theory and
practical application, the development of
functional, simplified processor models is
paramount. The MIPS (Microprocessor
without Interlocked Pipelined Stages)
architecture serves as an ideal platform for
such educational endeavors. Being a classic
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example of a Reduced Instruction Set
Computing (RISC) architecture, MIPS
offers a clean, straightforward instruction set
and a clear architectural design, making it
highly suitable for pedagogical purposes [2].

The primary objective of this report is to
detail the design, modeling, and simulation
of a Single-Cycle MIPS Microarchitecture
using the VHDL hardware description
language. By focusing on a single-cycle
implementation, the project aims to create a
transparent and verifiable model that clearly
demonstrates the five fundamental stages of
instruction execution: Instruction Fetch,
Decode, Execute, Memory Access, and Write
Back.

This document will cover the theoretical
foundations of the MIPS Instruction Set
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Architecture (ISA), the low-level design of
the datapath and control unit, and the
practical implementation and verification of
the model through VHDL simulation. The

goal is to provide a robust and
comprehensible educational tool that
significantly  enhances the learning

experience for future computer architects
and engineers.

EXPOSITION

I. Theoretical
Pedagogical Focus

The MIPS (Microprocessor without
Interlocked Pipelined Stages) architecture is
widely adopted in academic settings as a
prime example of a modern processor design
[2]. This section outlines the essential MIPS
concepts and justifies the choice of the

Background and

Single-Cycle model for educational
purposes.

1.1. The MIPS Instruction Set
Architecture (ISA)

The MIPS processor is based on the
Reduced Instruction Set Computing (RISC)
philosophy. This approach simplifies the
hardware design and instruction set,
facilitating faster execution and lower
complexity = compared to  Complex
Instruction  Set  Computing  (CISC)
architectures [2].

The core principle of RISC is to use a
small, uniform set of instructions, typically
executed within a single clock cycle,
promoting a higher Clock Per Instruction
(CPI) rate [2]. The uniform instruction size
and format allow for simplified decoding
logic, which is crucial for the educational
model presented in this report.

MIPS instructions are 32 bits long and are
structured into three main formats,
determined by the 6-bit OpCode field (bits
31-26) [5]:

R-Type (Register): Used for arithmetic,
logical, and shift operations (add, sub, and).
It specifies three register operands (rs, rt, rd)
and uses the Funct field (bits 5-0) to
determine the specific operation.
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I-Type  (Immediate):  Used  for
instructions  that involve a constant
(immediate) value, such as memory access
(Iw, sw) and immediate arithmetic (addi). It
includes two register operands (rs, rt) and a
16-bit immediate value.

J-Type (Jump): Used for unconditional
jump instructions, providing a 26-bit target
address.

The uniformity of these formats is key to
simplifying the design of the Control Unit,

making the decoding process highly
transparent to the student.
The MIPS architecture utilizes 32

general-purpose registers, typically denoted
as $r0 through $r31 [6]. Register $r0 is
hardwired to the value zero and cannot be
overwritten. The register set is essential for
the instruction execution phase, providing
fast, localized data storage for the ALU
operations.

1.2. Microarchitectural Model Selection

The chosen microarchitecture directly
impacts the complexity and speed of the
processor. For an instructional project,
clarity and ease of tracing are prioritized
over maximum performance.

We have selected the Single-Cycle MIPS
Microarchitecture for this model. In this
design, every instruction is guaranteed to
complete its execution within a single clock
cycle.

Pedagogical Rationale:

o Simplicity: The single-cycle design
removes the  complexity of
pipelining (hazards, stalls), allowing
students to focus entirely on the flow
of data through the datapath and the
generation of control signals.

e Traceability: The execution of an
instruction 1is straightforward to
trace, making it easy to observe
which functional blocks are active
and how multiplexers are switched
based on the instruction's OpCode.

The model is implemented using VHDL
(Very High-Speed Integrated Circuit
Hardware Description Language) at the
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Register Transfer Level (RTL). RTL
modeling describes the flow of data between
hardware registers and how functional units
transform that data. VHDL is chosen
because it allows for a clear, structural, and
behavioral description of the hardware
components, making the design suitable for
both simulation and eventual synthesis onto
a Field-Programmable Gate Array (FPGA).

I1. Single-Cycle MIPS
Microarchitecture Design

The successful modeling of the MIPS
processor hinges on the design of two
primary  functional = components: the
Datapath (where data is processed) and the
Control Unit (which orchestrates the
operations). This section details the design
of these elements. Fig. 1 presents overall
microarchitecture in adherence to the single-
cycle principle.

memories, and interconnecting buses -
required for instruction execution. Since the
architecture is single-cycle, the datapath
must contain enough hardware to complete
every instruction within one clock tick,
although only the required units are active
for any given instruction.

The instruction execution in the single-
cycle model passes through five conceptual
phases in sequence:

Instruction Fetch (IF): The instruction
is read from the Instruction Memory based
on the address stored in the Program Counter
(PC). The PC is incremented by 4 for the
next sequential instruction.

Instruction  Decode (ID): The
instruction is decoded, register operands are
identified, and the Register File reads the
necessary values from the registers specified
by the rs and rt fields.

Instruction [25-8] (shift-

Jump address [31-8]

left 2

Add

PC + 4 [31-28]

Add !

Instruction [31-26] MemtoReg

Read

Address Data

Write
Data

Data
Memory

Execute (EX): The Arithmetic Logic
Unit (ALU) performs the required operation
(arithmetic, logical, or address calculation

Control ALUDD
[ Memirite
ALUSrc
Reglirite
Instruction [25-21] Read
PC —EZZ:ESS Register 1 poog
Instruction [28-16] Read Data 1
Instruction|||| ™ | Register 2
[31-8] ‘M Write Read
Instruction Instruction [15-11] g [| Register Data 2
Menory iT/ Write
[ vata  Registers
Instruction [15-8] //;;;;j\
Instruction [5-8]
Fig. 1. Compiled Datapath and required Control Unit
2.1. The Single-Cycle Datapath
Architecture
The datapath represents the collection of
functional units - registers, ALUEs,
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for memory access/branching).
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Memory Access (MEM): If the
instruction is a Load or Store, data is read
from or written to the Data Memory.

Write Back (WB): The result (from the
ALU or Data Memory) is written back to the
Register File.

The following components form the
datapath, modeled at the RTL using VHDL:

Program Counter (PC) and PC Adder:
The PC holds the address of the current
instruction. A dedicated Adder calculates the
address of the next sequential instruction
(PC +4). Logic is included to handle updates
from branch and jump instructions.

Instruction Memory: A component
modeled as a large array of registers,
responsible for storing and retrieving the 32-
bit instruction word based on the address
provided by the PC.

Register File: A crucial component
implemented with two read ports and one
write port. It receives two 5-bit register
addresses (rs and rt) and outputs their
contents  simultaneously. The  write
operation is controlled by the RegWrite
control signal.

Arithmetic Logic Unit (ALU): The
ALU performs all computational tasks. It
receives two 32-bit inputs and performs a
function (e.g., ADD, SUB, AND, OR)
determined by the 4-bit ALU Control signal,
which is derived from the main Control Unit.

Data Memory: Modeled to support both
read and write operations, controlled by the
MemRead and MemWrite signals.

2.2. The Control Unit Design

The Control Unit is responsible for
generating all the necessary control signals
that direct the flow of data through the
datapath and specify the operation of the
functional units. Its input is primarily the 6-
bit OpCode (bits 31-26) of the instruction
being executed.

The Control Unit 1s typically
implemented as combinational logic. For
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each instruction OpCode, the unit must
assert a specific set of output signals. Table
1 presents main part of them.

Table 1. Control signals

Signal Function

RegDst Selects the destination register for the Write
Back phase (Rt for I-Type, Rd for R-Type).

ALUSrc Selects the second ALU operand (Read Data 2
from Register File or Sign-Extended Immediate

Value).

MemtoReg |Selects the data source for the Register File
write (ALU Result or Data Memory output).

RegWrite Enables writing the result back into the Register
File.

MemRead |Enables reading from Data Memory (lw
instruction).

MemWrite |Enables writing to Data Memory (sw
instruction).

Branch Enables the Program Counter to branch if the
ALU Zero flag is set (for beq).

Jump Enables the Program Counter to take the

unconditional jump address.

The detailed logic mapping between the
instruction OpCode/Funct field and these
control signals forms the core of the Control
Unit’s VHDL implementation.

III. VHDL
Verification

This section describes the practical
realization of the Single-Cycle MIPS
Microarchitecture using VHDL and details
the methodology employed to verify the
model's functional correctness through
simulation, which is crucial for establishing
its reliability as an educational tool.

Implementation and

3.1. Integration and RTL Modeling

The VHDL project utilizes an RTL
modeling approach [3] [4] where the
processor is composed by processes and
signals interconnecting the processes,
describing the components detailed in
Section II (Control Unit, ALU, Register File,
Memories).

Each functional block (e.g., ALU,
Register File, PC) is modeled as a separate
VHDL process. The signals connecting
these components correspond directly to the
data and control lines illustrated in the
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Datapath Block Diagram.

Memory Implementation: Both the
Instruction Memory and Data Memory are
implemented as arrays within the VHDL
code, often initialized with test instructions
and data to ensure a controlled simulation
environment.

3.2. Simulation Methodology and Test
Programs

Verification is performed using a VHDL
Testbench, which serves as the external
environment interacting with the processor
model.

The Testbench provides the necessary
clock and reset signals (clk, rst) and
monitors the internal and output signals of
the MIPS processor (e.g., PC value, Register
File contents, Data Memory access).

A sequence of MIPS instructions is pre-
loaded into the Instruction Memory
component of the model (fig. 2). The chosen
instruction set covers the basic R-type,
Load/Store, and Branch operations.

imem(4) <= ‘i

imem(5) <= " "-

imem (&) <= " "-

imem(7) <= " ". —— ADD R10, RB, RS9
—— #R10 = R8 + RY

imem(8) <= " ';

imem(9) =" "

imem(10) <= " .

imem(ll) <= "; —- SUB R10, RB, R9
-— #R10 = RB - R9

imem(12) <= ';

imem(13) <= " .

imem(14) <= " .

imem{1l5) <= "; —— ADDI R9, R8, 10
-— #R9 = R8 + 10

imem({la) <=

imem({17) <= "
imem({1l8) <= "
imem({19) <= "

-- SW R8, R9, 9

-- #MEM[R9 + 9] = RSB

imem(20) <=
imem({21) <= "
imem({22) <= "
imem(23) <=

-- LW R8, R9, 8

—-— #RE8 = MEM[RY9 + 8]
imem(24) <= ';
imem(25) <= "11111111 '
imem(26) <= ';
imem(27) <= 1"; —— BNWNE R10, REB, -5
-— #if R10 == R8 then

-— # PC =PC + 4 -5
imem (28) <= " Loy
imem({29) <= " ..
imem(30) <= " .
Fig. 2. Preloaded test program in the
instruction memory
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To demonstrate correct operation for
educational purposes, test cases include
programs designed to:

e Arithmetic: Verify R-type instruction
ADD and I-type instruction ADDI by
checking if the result is correctly
written back to the destination register
(fig. 3 and fig. 4).

e Data Transfer: Verify Load (LW) and
Store (SW) operations by confirming
that the ALU calculates the correct
memory address and that the data is
transferred between the Data Memory
and the Register File (fig. 5 and fig. 6).

e Control Flow: Verify Branch Not
Equal (BNE) by ensuring the Program
Counter updates correctly to the
branch target address only when the
ALU's zero flag is not set (fig. 7).

3.3. Simulation Results and Educational
Demonstration

The simulation results, typically
presented as waveform diagrams, provide
visual proof of the processor's functionality.
For an educational model, these traces are
vital for correlating the assembly code with
hardware behavior.

The waveform in figure 3 clearly shows
the correct assertion of control signals for an
R-Type instruction. Specifically, the Control
Unit asserts the RegDst and RegWrite
signals, directing the result to the destination
register specified by the R/0 field. The
values read from the source registers (RS and
R9) are routed to the ALU inputs (4 and B),
where the requested operation (addition) is
performed. The result from the ALU
(aluRes) is successfully written to the
Register File during the rising edge of the
next clock cycle, confirming the model's
functional integrity for fundamental
arithmetic operations.
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Fig. 3. Simulation result of the model showing
execution of the instruction ADD R10, RS, R9

Figure 4 shows the tracing of the
execution of the I-type arithmetic instruction
ADDI R9, RS, 10. The ADDI instruction
demonstrates the use of immediate values
and the ALUSrc control signal. The
simulation shows that the Control Unit
asserts ALUSrc = 1. This directs the sign-
extended 32-bit immediate value to the
second input of the ALU, bypassing the
second read port of the Register File. The
ALU result is routed to the register specified
by the Rt field, as is standard for I-Type
arithmetic. The value read from the source
register (R8) is correctly added to the sign-
extended immediate value (/0) by the ALU,
and the resulting sum is written to the
destination register (R9) upon the next clock
edge.  This  verifies the  correct
implementation of the sign-extension unit
and the routing logic.
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Fig. 4. Simulation result of the model showing
execution of the instruction ADDI R9, RS, 10
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Figure 5 presents the tracing of the
execution of the store word instruction SW
RS, 9(R9). The simulation waveform
demonstrates the memory write path and
confirms the following: The Control Unit
asserts MemWrite = 'l', indicating a write
operation to the Data Memory. Critically,
RegWrite is asserted to '0' since no data is
being written back to the Register File; The
ALU, instructed by the aluCtrl signal,
calculates the effective memory address by
summing the contents of the base register
(R9) and the sign-extended 16-bit immediate
offset (9); The value to be stored, read from
the Register File's second read port (Register
RS), is routed directly to the input of the
Data Memory; Upon the rising edge of the
clock, the Data Memory writes the content
of R8 to the calculated effective address.
This verifies the correct functionality of the
address calculation logic and the memory
write mechanism.

Figure 6 demonstrates the tracing of the
execution of the load word instruction LW
RS, 8(RY9). The LW instruction is the
counterpart (or inverse operation) to SW and
demonstrates the memory read path
followed by a write-back to the register file.
The simulation waveform confirms the
following: The Control Unit asserts both
MemRead = 'l" (to read from Data Memory)
and RegWrite = 'l' (to update the Register
File). Since the data comes from memory,
MemtoReg must be set to select the Data
Memory output; Like SW, the ALU
calculates the effective memory address by
summing the contents of the base register
(R9) and the sign-extended 16-bit immediate
offset (8); The calculated address is routed
to the Data Memory's address input. The 32-
bit data retrieved from the Data Memory is
then routed back toward the Register File;
The retrieved data is written back to the
destination register (RS8) upon the rising
edge of the next clock cycle. This confirms
the correct implementation of the load
operation and the memory-to-register data
path.
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Fig. 5. Simulation result of the model showing
execution of the instruction SW RS, 9(R9)

The tracing of the control flow instruction
Branch Not Equal is presented in figure 7.
This demonstration is key to understanding
how the processor handles conditional
control flow when the condition is not met.
For the instruction BNE RI10, RS, -5, the
processor performs the following: The ALU
performs a subtraction between the contents
of source registers R/0 and RS. The Zero
Flag is set to '0' if the values are not equal,
satisfying the branch condition; The Control
Unit asserts the signal BrNotEq, which is
based on the BNE OpCode, indicating a
conditional branch is active. The target
address is calculated by adding the sign-
extended, shifted offset (-5 * 4 = -20 bytes)
to the PC + 4 value; The dedicated branch
logic checks for the condition: (BrNotEq
AND NOT Zero). If this condition is TRUE
(meaning the registers are not equal), the
logic selects the calculated branch target
address; The simulation trace clearly shows
the Program Counter (PC) being updated
with the calculated target address (PC + 4 -
20), resulting in the next instruction being
executed from a previous memory location,
demonstrating a successful backward jump.
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Fig. 6. Simulation result of the model showing
execution of the instruction LW RS, 10(R9)

The  successful  simulation  and
verification of these core instructions
confirm the functional correctness of the
Single-Cycle MIPS model, validating its
reliability as a hands-on tool for teaching
Computer Architecture concepts.

The complete VHDL source code,
including the Testbench necessary for
simulation, is publicly available to support
collaborative education and reproducibility.
The project repository can be accessed at:
https://github.com/pminev-debug/mipsEdu.
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Fig. 7. Simulation result of the model showing
execution of the instruction BNE R10, RS, -5
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CONCLUSION
This report successfully presented the

design, VHDL modeling, and verification of

a Single-Cycle MIPS Microarchitecture

specifically adapted as an educational tool

for computer architecture courses. The
primary objective of creating a simple,
transparent, and functionally correct model
was achieved.

The key accomplishments include:

o Selection and Justification: The choice
of the MIPS ISA and the Single-Cycle
model was rigorously justified on
pedagogical grounds, prioritizing ease of
understanding and traceability over
performance complexity.

e RTL Design: The processor's Datapath
and Control Unit were designed and
modeled at the Register Transfer Level
(RTL) using VHDL, ensuring that the
model is suitable for both simulation and
hardware synthesis.

e Verification: Comprehensive testing
using a VHDL Testbench demonstrated
the functional correctness of the model
across core instruction types (R-type,
Load/Store, and Branching). The
simulation waveforms provide clear
visual proof of data flow and control
signal assertion during instruction
execution, making them invaluable for
instructional demonstrations.

The result is a reliable and modular
hardware description that effectively bridges
the gap between theoretical instruction set
architecture and practical digital hardware
implementation.

While the Single-Cycle model serves its
purpose as an introductory tool, future work
can expand the project to introduce concepts
related to performance and optimization:

o Transition to Pipelined Architecture:
The most critical extension would be to
transform the single-cycle model into a
Five-Stage Pipelined MIPS Processor.
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This would introduce the challenges of
data hazards, control hazards, and
require the implementation of solutions
like forwarding wunits and branch
prediction, representing the next level of
complexity in computer architecture
education.

e Performance Analysis: Implementing
the design on a physical FPGA device
would allow for real-world
measurements of clock speed and
latency, providing a practical dimension
to the theoretical performance analysis.

e Graphical User Interface (GUI)
Integration: Developing a front-end
interface to visualize the state of the
Register File, Data Memory, and the
active path lights during execution
would greatly enhance the model's utility
as a teaching aid.

The authors are grateful to the Ministry of
Education and Science of the Republic of
Bulgaria for the support under contract
NIP2025-15 in Technical University of
Gabrovo.
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