
INTERNATIONAL SCIENTIFIC

CONFERENCE

20-22 November 2025, GABROVO

“UNITECH – SELECTED PAPERS” vol. 2025

Published by Technical University of Gabrovo

ISSN 2603-378X

This is an open access article licensed under

Creative Commons Attribution 4.0 International

doi: www.doi.org/10.70456/..........................

MODELING AND SIMULATION OF A SINGLE-CYCLE MIPS

MICROARCHITECTURE AS AN EDUCATIONAL TOOL FOR

COMPUTER ARCHITECTURE

Petar Minev*, Ilian Varbov, Valentina Kukenska, Matyo Dinev

Technical University of Gabrovo, 4 H. Dimitar Str., Gabrovo, Bulgaria

*Corresponding author: pminev@tugab.bg

Abstract

This report details the design, modeling, and simulation of a Single-Cycle MIPS Microarchitecture using the

VHDL hardware description language. The primary objective of this project is to create a robust and

pedagogically effective model suitable for use as an educational tool in introductory Computer Architecture and

Organization courses.

The work focuses on implementing a Reduced Instruction Set Computing (RISC) approach, specifically covering

a critical subset of the MIPS Instruction Set Architecture (ISA), including R-type, I-type, and basic control flow

instructions. The single-cycle design was chosen for its straightforward pipeline-less operation, which facilitates

the clear understanding and visualization of the core execution phases: Instruction Fetch, Decode, Execute,

Memory Access, and Write Back.

The document provides an in-depth analysis of the main functional blocks—the Program Counter (PC), the

Register File, the Arithmetic Logic Unit (ALU), and the Control Unit—and demonstrates their seamless integration

within the Datapath. The VHDL implementation is verified through extensive testbenches, generating precise

timing diagrams that confirm functional correctness and serve as illustrative examples for students. The resulting

model successfully bridges the gap between theoretical knowledge and practical hardware implementation,

making complex processor concepts accessible to learners.

Keywords: MIPS Microarchitecture, Single-Cycle, VHDL, Educational Tool, Computer Architectures.

INTRODUCTION

The study of Computer Architecture and

Organization is fundamental to understanding

how modern computing systems operate [1].

At the core of any digital system lies the

processor, a complex component whose inner

workings are often challenging for students to

grasp solely through abstract theory. This

difficulty stems from the need to correlate

high-level programming constructs with low-

level hardware mechanisms [2].

To bridge this gap between theory and

practical application, the development of

functional, simplified processor models is

paramount. The MIPS (Microprocessor

without Interlocked Pipelined Stages)

architecture serves as an ideal platform for

such educational endeavors. Being a classic

example of a Reduced Instruction Set

Computing (RISC) architecture, MIPS

offers a clean, straightforward instruction set

and a clear architectural design, making it

highly suitable for pedagogical purposes [2].

The primary objective of this report is to

detail the design, modeling, and simulation

of a Single-Cycle MIPS Microarchitecture

using the VHDL hardware description

language. By focusing on a single-cycle

implementation, the project aims to create a

transparent and verifiable model that clearly

demonstrates the five fundamental stages of

instruction execution: Instruction Fetch,

Decode, Execute, Memory Access, and Write

Back.

This document will cover the theoretical

foundations of the MIPS Instruction Set

https://creativecommons.org/licenses/by/4.0/?ref=chooser-v1
http://www.doi.org/10.70456/

“UNITECH – SELECTED PAPERS” vol. 2025

Published by Technical University of Gabrovo

ISSN 2603-378X

This is an open access article licensed under

Creative Commons Attribution 4.0 International

doi: www.doi.org/10.70456/..........................

Architecture (ISA), the low-level design of

the datapath and control unit, and the

practical implementation and verification of

the model through VHDL simulation. The

goal is to provide a robust and

comprehensible educational tool that

significantly enhances the learning

experience for future computer architects

and engineers.

EXPOSITION

I. Theoretical Background and

Pedagogical Focus

The MIPS (Microprocessor without

Interlocked Pipelined Stages) architecture is

widely adopted in academic settings as a

prime example of a modern processor design

[2]. This section outlines the essential MIPS

concepts and justifies the choice of the

Single-Cycle model for educational

purposes.

1.1. The MIPS Instruction Set

Architecture (ISA)

The MIPS processor is based on the

Reduced Instruction Set Computing (RISC)

philosophy. This approach simplifies the

hardware design and instruction set,

facilitating faster execution and lower

complexity compared to Complex

Instruction Set Computing (CISC)

architectures [2].

The core principle of RISC is to use a

small, uniform set of instructions, typically

executed within a single clock cycle,

promoting a higher Clock Per Instruction

(CPI) rate [2]. The uniform instruction size

and format allow for simplified decoding

logic, which is crucial for the educational

model presented in this report.

MIPS instructions are 32 bits long and are

structured into three main formats,

determined by the 6-bit OpCode field (bits

31–26) [5]:

R-Type (Register): Used for arithmetic,

logical, and shift operations (add, sub, and).

It specifies three register operands (rs, rt, rd)

and uses the Funct field (bits 5–0) to

determine the specific operation.

I-Type (Immediate): Used for

instructions that involve a constant

(immediate) value, such as memory access

(lw, sw) and immediate arithmetic (addi). It

includes two register operands (rs, rt) and a

16-bit immediate value.

J-Type (Jump): Used for unconditional

jump instructions, providing a 26-bit target

address.

The uniformity of these formats is key to

simplifying the design of the Control Unit,

making the decoding process highly

transparent to the student.

The MIPS architecture utilizes 32

general-purpose registers, typically denoted

as $r0 through $r31 [6]. Register $r0 is

hardwired to the value zero and cannot be

overwritten. The register set is essential for

the instruction execution phase, providing

fast, localized data storage for the ALU

operations.

1.2. Microarchitectural Model Selection

The chosen microarchitecture directly

impacts the complexity and speed of the

processor. For an instructional project,

clarity and ease of tracing are prioritized

over maximum performance.

We have selected the Single-Cycle MIPS

Microarchitecture for this model. In this

design, every instruction is guaranteed to

complete its execution within a single clock

cycle.

Pedagogical Rationale:

• Simplicity: The single-cycle design

removes the complexity of

pipelining (hazards, stalls), allowing

students to focus entirely on the flow

of data through the datapath and the

generation of control signals.

• Traceability: The execution of an

instruction is straightforward to

trace, making it easy to observe

which functional blocks are active

and how multiplexers are switched

based on the instruction's OpCode.

The model is implemented using VHDL

(Very High-Speed Integrated Circuit

Hardware Description Language) at the

https://creativecommons.org/licenses/by/4.0/?ref=chooser-v1
http://www.doi.org/10.70456/

“UNITECH – SELECTED PAPERS” vol. 2025

Published by Technical University of Gabrovo

ISSN 2603-378X

This is an open access article licensed under

Creative Commons Attribution 4.0 International

doi: www.doi.org/10.70456/..........................

Register Transfer Level (RTL). RTL

modeling describes the flow of data between

hardware registers and how functional units

transform that data. VHDL is chosen

because it allows for a clear, structural, and

behavioral description of the hardware

components, making the design suitable for

both simulation and eventual synthesis onto

a Field-Programmable Gate Array (FPGA).

II. Single-Cycle MIPS

Microarchitecture Design

The successful modeling of the MIPS

processor hinges on the design of two

primary functional components: the

Datapath (where data is processed) and the

Control Unit (which orchestrates the

operations). This section details the design

of these elements. Fig. 1 presents overall

microarchitecture in adherence to the single-

cycle principle.

2.1. The Single-Cycle Datapath

Architecture

The datapath represents the collection of

functional units - registers, ALUs,

memories, and interconnecting buses -

required for instruction execution. Since the

architecture is single-cycle, the datapath

must contain enough hardware to complete

every instruction within one clock tick,

although only the required units are active

for any given instruction.

The instruction execution in the single-

cycle model passes through five conceptual

phases in sequence:

Instruction Fetch (IF): The instruction

is read from the Instruction Memory based

on the address stored in the Program Counter

(PC). The PC is incremented by 4 for the

next sequential instruction.

Instruction Decode (ID): The

instruction is decoded, register operands are

identified, and the Register File reads the

necessary values from the registers specified

by the rs and rt fields.

Execute (EX): The Arithmetic Logic

Unit (ALU) performs the required operation

(arithmetic, logical, or address calculation

for memory access/branching).

Fig. 1. Compiled Datapath and required Control Unit

https://creativecommons.org/licenses/by/4.0/?ref=chooser-v1
http://www.doi.org/10.70456/

“UNITECH – SELECTED PAPERS” vol. 2025

Published by Technical University of Gabrovo

ISSN 2603-378X

This is an open access article licensed under

Creative Commons Attribution 4.0 International

doi: www.doi.org/10.70456/..........................

Memory Access (MEM): If the

instruction is a Load or Store, data is read

from or written to the Data Memory.

Write Back (WB): The result (from the

ALU or Data Memory) is written back to the

Register File.

The following components form the

datapath, modeled at the RTL using VHDL:

Program Counter (PC) and PC Adder:

The PC holds the address of the current

instruction. A dedicated Adder calculates the

address of the next sequential instruction

(PC + 4). Logic is included to handle updates

from branch and jump instructions.

Instruction Memory: A component

modeled as a large array of registers,

responsible for storing and retrieving the 32-

bit instruction word based on the address

provided by the PC.

Register File: A crucial component

implemented with two read ports and one

write port. It receives two 5-bit register

addresses (rs and rt) and outputs their

contents simultaneously. The write

operation is controlled by the RegWrite

control signal.

Arithmetic Logic Unit (ALU): The

ALU performs all computational tasks. It

receives two 32-bit inputs and performs a

function (e.g., ADD, SUB, AND, OR)

determined by the 4-bit ALU Control signal,

which is derived from the main Control Unit.

Data Memory: Modeled to support both

read and write operations, controlled by the

MemRead and MemWrite signals.

2.2. The Control Unit Design

The Control Unit is responsible for

generating all the necessary control signals

that direct the flow of data through the

datapath and specify the operation of the

functional units. Its input is primarily the 6-

bit OpCode (bits 31–26) of the instruction

being executed.

The Control Unit is typically

implemented as combinational logic. For

each instruction OpCode, the unit must

assert a specific set of output signals. Table

1 presents main part of them.

Table 1. Control signals
Signal Function

RegDst Selects the destination register for the Write

Back phase (Rt for I-Type, Rd for R-Type).

ALUSrc Selects the second ALU operand (Read Data 2

from Register File or Sign-Extended Immediate

Value).

MemtoReg Selects the data source for the Register File

write (ALU Result or Data Memory output).

RegWrite Enables writing the result back into the Register

File.

MemRead Enables reading from Data Memory (lw

instruction).

MemWrite Enables writing to Data Memory (sw

instruction).

Branch Enables the Program Counter to branch if the

ALU Zero flag is set (for beq).

Jump Enables the Program Counter to take the

unconditional jump address.

The detailed logic mapping between the

instruction OpCode/Funct field and these

control signals forms the core of the Control

Unit’s VHDL implementation.

III. VHDL Implementation and

Verification

This section describes the practical

realization of the Single-Cycle MIPS

Microarchitecture using VHDL and details

the methodology employed to verify the

model's functional correctness through

simulation, which is crucial for establishing

its reliability as an educational tool.

3.1. Integration and RTL Modeling

The VHDL project utilizes an RTL

modeling approach [3] [4] where the

processor is composed by processes and

signals interconnecting the processes,

describing the components detailed in

Section II (Control Unit, ALU, Register File,

Memories).

Each functional block (e.g., ALU,

Register File, PC) is modeled as a separate

VHDL process. The signals connecting

these components correspond directly to the

data and control lines illustrated in the

https://creativecommons.org/licenses/by/4.0/?ref=chooser-v1
http://www.doi.org/10.70456/

“UNITECH – SELECTED PAPERS” vol. 2025

Published by Technical University of Gabrovo

ISSN 2603-378X

This is an open access article licensed under

Creative Commons Attribution 4.0 International

doi: www.doi.org/10.70456/..........................

Datapath Block Diagram.

Memory Implementation: Both the

Instruction Memory and Data Memory are

implemented as arrays within the VHDL

code, often initialized with test instructions

and data to ensure a controlled simulation

environment.

3.2. Simulation Methodology and Test

Programs

Verification is performed using a VHDL

Testbench, which serves as the external

environment interacting with the processor

model.

The Testbench provides the necessary

clock and reset signals (clk, rst) and

monitors the internal and output signals of

the MIPS processor (e.g., PC value, Register

File contents, Data Memory access).

A sequence of MIPS instructions is pre-

loaded into the Instruction Memory

component of the model (fig. 2). The chosen

instruction set covers the basic R-type,

Load/Store, and Branch operations.

Fig. 2. Preloaded test program in the

instruction memory

To demonstrate correct operation for

educational purposes, test cases include

programs designed to:

• Arithmetic: Verify R-type instruction

ADD and I-type instruction ADDI by

checking if the result is correctly

written back to the destination register

(fig. 3 and fig. 4).

• Data Transfer: Verify Load (LW) and

Store (SW) operations by confirming

that the ALU calculates the correct

memory address and that the data is

transferred between the Data Memory

and the Register File (fig. 5 and fig. 6).

• Control Flow: Verify Branch Not

Equal (BNE) by ensuring the Program

Counter updates correctly to the

branch target address only when the

ALU's zero flag is not set (fig. 7).

3.3. Simulation Results and Educational

Demonstration

The simulation results, typically

presented as waveform diagrams, provide

visual proof of the processor's functionality.

For an educational model, these traces are

vital for correlating the assembly code with

hardware behavior.

The waveform in figure 3 clearly shows

the correct assertion of control signals for an

R-Type instruction. Specifically, the Control

Unit asserts the RegDst and RegWrite

signals, directing the result to the destination

register specified by the R10 field. The

values read from the source registers (R8 and

R9) are routed to the ALU inputs (A and B),

where the requested operation (addition) is

performed. The result from the ALU

(aluRes) is successfully written to the

Register File during the rising edge of the

next clock cycle, confirming the model's

functional integrity for fundamental

arithmetic operations.

https://creativecommons.org/licenses/by/4.0/?ref=chooser-v1
http://www.doi.org/10.70456/

“UNITECH – SELECTED PAPERS” vol. 2025

Published by Technical University of Gabrovo

ISSN 2603-378X

This is an open access article licensed under

Creative Commons Attribution 4.0 International

doi: www.doi.org/10.70456/..........................

Fig. 3. Simulation result of the model showing
execution of the instruction ADD R10, R8, R9

Figure 4 shows the tracing of the
execution of the I-type arithmetic instruction
ADDI R9, R8, 10. The ADDI instruction
demonstrates the use of immediate values
and the ALUSrc control signal. The
simulation shows that the Control Unit
asserts ALUSrc = 1. This directs the sign-
extended 32-bit immediate value to the
second input of the ALU, bypassing the
second read port of the Register File. The
ALU result is routed to the register specified
by the Rt field, as is standard for I-Type
arithmetic. The value read from the source
register (R8) is correctly added to the sign-
extended immediate value (10) by the ALU,
and the resulting sum is written to the
destination register (R9) upon the next clock
edge. This verifies the correct
implementation of the sign-extension unit
and the routing logic.

Fig. 4. Simulation result of the model showing
execution of the instruction ADDI R9, R8, 10

Figure 5 presents the tracing of the

execution of the store word instruction SW

R8, 9(R9). The simulation waveform

demonstrates the memory write path and

confirms the following: The Control Unit

asserts MemWrite = '1', indicating a write

operation to the Data Memory. Critically,

RegWrite is asserted to '0' since no data is

being written back to the Register File; The

ALU, instructed by the aluCtrl signal,

calculates the effective memory address by

summing the contents of the base register

(R9) and the sign-extended 16-bit immediate

offset (9); The value to be stored, read from

the Register File's second read port (Register

R8), is routed directly to the input of the

Data Memory; Upon the rising edge of the

clock, the Data Memory writes the content

of R8 to the calculated effective address.

This verifies the correct functionality of the

address calculation logic and the memory

write mechanism.

Figure 6 demonstrates the tracing of the

execution of the load word instruction LW

R8, 8(R9). The LW instruction is the

counterpart (or inverse operation) to SW and

demonstrates the memory read path

followed by a write-back to the register file.

The simulation waveform confirms the

following: The Control Unit asserts both

MemRead = '1' (to read from Data Memory)

and RegWrite = '1' (to update the Register

File). Since the data comes from memory,

MemtoReg must be set to select the Data

Memory output; Like SW, the ALU

calculates the effective memory address by

summing the contents of the base register

(R9) and the sign-extended 16-bit immediate

offset (8); The calculated address is routed

to the Data Memory's address input. The 32-

bit data retrieved from the Data Memory is

then routed back toward the Register File;

The retrieved data is written back to the

destination register (R8) upon the rising

edge of the next clock cycle. This confirms

the correct implementation of the load

operation and the memory-to-register data

path.

https://creativecommons.org/licenses/by/4.0/?ref=chooser-v1
http://www.doi.org/10.70456/

“UNITECH – SELECTED PAPERS” vol. 2025

Published by Technical University of Gabrovo

ISSN 2603-378X

This is an open access article licensed under

Creative Commons Attribution 4.0 International

doi: www.doi.org/10.70456/..........................

Fig. 5. Simulation result of the model showing

execution of the instruction SW R8, 9(R9)

The tracing of the control flow instruction

Branch Not Equal is presented in figure 7.

This demonstration is key to understanding

how the processor handles conditional

control flow when the condition is not met.

For the instruction BNE R10, R8, -5, the

processor performs the following: The ALU

performs a subtraction between the contents

of source registers R10 and R8. The Zero

Flag is set to '0' if the values are not equal,

satisfying the branch condition; The Control

Unit asserts the signal BrNotEq, which is

based on the BNE OpCode, indicating a

conditional branch is active. The target

address is calculated by adding the sign-

extended, shifted offset (-5 * 4 = -20 bytes)

to the PC + 4 value; The dedicated branch

logic checks for the condition: (BrNotEq

AND NOT Zero). If this condition is TRUE

(meaning the registers are not equal), the

logic selects the calculated branch target

address; The simulation trace clearly shows

the Program Counter (PC) being updated

with the calculated target address (PC + 4 -

20), resulting in the next instruction being

executed from a previous memory location,

demonstrating a successful backward jump.

Fig. 6. Simulation result of the model showing

execution of the instruction LW R8, 10(R9)

The successful simulation and

verification of these core instructions

confirm the functional correctness of the

Single-Cycle MIPS model, validating its

reliability as a hands-on tool for teaching

Computer Architecture concepts.

The complete VHDL source code,

including the Testbench necessary for

simulation, is publicly available to support

collaborative education and reproducibility.

The project repository can be accessed at:

https://github.com/pminev-debug/mipsEdu.

Fig. 7. Simulation result of the model showing

execution of the instruction BNE R10, R8, -5

https://creativecommons.org/licenses/by/4.0/?ref=chooser-v1
http://www.doi.org/10.70456/
https://github.com/pminev-debug/mipsEdu

“UNITECH – SELECTED PAPERS” vol. 2025

Published by Technical University of Gabrovo

ISSN 2603-378X

This is an open access article licensed under

Creative Commons Attribution 4.0 International

doi: www.doi.org/10.70456/..........................

CONCLUSION

This report successfully presented the

design, VHDL modeling, and verification of

a Single-Cycle MIPS Microarchitecture

specifically adapted as an educational tool

for computer architecture courses. The

primary objective of creating a simple,

transparent, and functionally correct model

was achieved.

The key accomplishments include:

• Selection and Justification: The choice

of the MIPS ISA and the Single-Cycle

model was rigorously justified on

pedagogical grounds, prioritizing ease of

understanding and traceability over

performance complexity.

• RTL Design: The processor's Datapath

and Control Unit were designed and

modeled at the Register Transfer Level

(RTL) using VHDL, ensuring that the

model is suitable for both simulation and

hardware synthesis.

• Verification: Comprehensive testing

using a VHDL Testbench demonstrated

the functional correctness of the model

across core instruction types (R-type,

Load/Store, and Branching). The

simulation waveforms provide clear

visual proof of data flow and control

signal assertion during instruction

execution, making them invaluable for

instructional demonstrations.

The result is a reliable and modular

hardware description that effectively bridges

the gap between theoretical instruction set

architecture and practical digital hardware

implementation.

While the Single-Cycle model serves its

purpose as an introductory tool, future work

can expand the project to introduce concepts

related to performance and optimization:

• Transition to Pipelined Architecture:

The most critical extension would be to

transform the single-cycle model into a

Five-Stage Pipelined MIPS Processor.

This would introduce the challenges of

data hazards, control hazards, and

require the implementation of solutions

like forwarding units and branch

prediction, representing the next level of

complexity in computer architecture

education.

• Performance Analysis: Implementing

the design on a physical FPGA device

would allow for real-world

measurements of clock speed and

latency, providing a practical dimension

to the theoretical performance analysis.

• Graphical User Interface (GUI)

Integration: Developing a front-end

interface to visualize the state of the

Register File, Data Memory, and the

active path lights during execution

would greatly enhance the model's utility

as a teaching aid.

The authors are grateful to the Ministry of

Education and Science of the Republic of

Bulgaria for the support under contract

NIP2025-15 in Technical University of

Gabrovo.

REFERENCE
[1] Patterson D., J. Hennessy, Computer

Organization and Design MIPS Edition: The

Hardware/Software Interface, 6th Edition,

2020, Morgan Kaufmann.

[2] Patterson D., J. Hennessy, Computer

Architecture, Fifth Edition: A Quantitative

Approach, 2011, Morgan Kaufmann.

[3] Haskell R., D. Hanna, Introduction to Digital

Design Using Digilent FPGA Boards, 2009,

Rochester Hills.

[4] Chu P., FPGA Prototyping by VHDL

Examples: Xilinx Spartan-3 Version 1st

Edition, 2008, Wiley-Interscience.

[5] Negru M., F. Oniga, S. Nedevschi,

COMPUTER ARCHITECTURE Laboratory

Guide, 2015, Cluj-Napoca.

[6] Wave Computing, MIPS® Architecture for

Programmers Volume II-A: The MIPS32®

Instruction Set Manual, 2016.

https://creativecommons.org/licenses/by/4.0/?ref=chooser-v1
http://www.doi.org/10.70456/

