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Abstract 

This report details the design, modeling, and simulation of a Single-Cycle MIPS Microarchitecture using the 

VHDL hardware description language. The primary objective of this project is to create a robust and 

pedagogically effective model suitable for use as an educational tool in introductory Computer Architecture and 

Organization courses. 

The work focuses on implementing a Reduced Instruction Set Computing (RISC) approach, specifically covering 

a critical subset of the MIPS Instruction Set Architecture (ISA), including R-type, I-type, and basic control flow 

instructions. The single-cycle design was chosen for its straightforward pipeline-less operation, which facilitates 

the clear understanding and visualization of the core execution phases: Instruction Fetch, Decode, Execute, 

Memory Access, and Write Back. 

The document provides an in-depth analysis of the main functional blocks—the Program Counter (PC), the 

Register File, the Arithmetic Logic Unit (ALU), and the Control Unit—and demonstrates their seamless integration 

within the Datapath. The VHDL implementation is verified through extensive testbenches, generating precise 

timing diagrams that confirm functional correctness and serve as illustrative examples for students. The resulting 

model successfully bridges the gap between theoretical knowledge and practical hardware implementation, 

making complex processor concepts accessible to learners. 

Keywords: MIPS Microarchitecture, Single-Cycle, VHDL, Educational Tool, Computer Architectures. 

INTRODUCTION 

The study of Computer Architecture and 

Organization is fundamental to understanding 

how modern computing systems operate [1]. 

At the core of any digital system lies the 

processor, a complex component whose inner 

workings are often challenging for students to 

grasp solely through abstract theory. This 

difficulty stems from the need to correlate 

high-level programming constructs with low-

level hardware mechanisms [2]. 

To bridge this gap between theory and 

practical application, the development of 

functional, simplified processor models is 

paramount. The MIPS (Microprocessor 

without Interlocked Pipelined Stages) 

architecture serves as an ideal platform for 

such educational endeavors. Being a classic 

example of a Reduced Instruction Set 

Computing (RISC) architecture, MIPS 

offers a clean, straightforward instruction set 

and a clear architectural design, making it 

highly suitable for pedagogical purposes [2]. 

The primary objective of this report is to 

detail the design, modeling, and simulation 

of a Single-Cycle MIPS Microarchitecture 

using the VHDL hardware description 

language. By focusing on a single-cycle 

implementation, the project aims to create a 

transparent and verifiable model that clearly 

demonstrates the five fundamental stages of 

instruction execution: Instruction Fetch, 

Decode, Execute, Memory Access, and Write 

Back. 

This document will cover the theoretical 

foundations of the MIPS Instruction Set 
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Architecture (ISA), the low-level design of 

the datapath and control unit, and the 

practical implementation and verification of 

the model through VHDL simulation. The 

goal is to provide a robust and 

comprehensible educational tool that 

significantly enhances the learning 

experience for future computer architects 

and engineers.   

EXPOSITION 

I. Theoretical Background and 

Pedagogical Focus 

The MIPS (Microprocessor without 

Interlocked Pipelined Stages) architecture is 

widely adopted in academic settings as a 

prime example of a modern processor design 

[2]. This section outlines the essential MIPS 

concepts and justifies the choice of the 

Single-Cycle model for educational 

purposes. 

1.1. The MIPS Instruction Set 

Architecture (ISA) 

The MIPS processor is based on the 

Reduced Instruction Set Computing (RISC) 

philosophy. This approach simplifies the 

hardware design and instruction set, 

facilitating faster execution and lower 

complexity compared to Complex 

Instruction Set Computing (CISC) 

architectures [2]. 

The core principle of RISC is to use a 

small, uniform set of instructions, typically 

executed within a single clock cycle, 

promoting a higher Clock Per Instruction 

(CPI) rate [2]. The uniform instruction size 

and format allow for simplified decoding 

logic, which is crucial for the educational 

model presented in this report. 

MIPS instructions are 32 bits long and are 

structured into three main formats, 

determined by the 6-bit OpCode field (bits 

31–26) [5]: 

R-Type (Register): Used for arithmetic, 

logical, and shift operations (add, sub, and). 

It specifies three register operands (rs, rt, rd) 

and uses the Funct field (bits 5–0) to 

determine the specific operation. 

I-Type (Immediate): Used for 

instructions that involve a constant 

(immediate) value, such as memory access 

(lw, sw) and immediate arithmetic (addi). It 

includes two register operands (rs, rt) and a 

16-bit immediate value. 

J-Type (Jump): Used for unconditional 

jump instructions, providing a 26-bit target 

address. 

The uniformity of these formats is key to 

simplifying the design of the Control Unit, 

making the decoding process highly 

transparent to the student. 

The MIPS architecture utilizes 32 

general-purpose registers, typically denoted 

as $r0 through $r31 [6]. Register $r0 is 

hardwired to the value zero and cannot be 

overwritten. The register set is essential for 

the instruction execution phase, providing 

fast, localized data storage for the ALU 

operations. 

1.2. Microarchitectural Model Selection 

The chosen microarchitecture directly 

impacts the complexity and speed of the 

processor. For an instructional project, 

clarity and ease of tracing are prioritized 

over maximum performance. 

We have selected the Single-Cycle MIPS 

Microarchitecture for this model. In this 

design, every instruction is guaranteed to 

complete its execution within a single clock 

cycle. 

Pedagogical Rationale: 

• Simplicity: The single-cycle design

removes the complexity of

pipelining (hazards, stalls), allowing

students to focus entirely on the flow

of data through the datapath and the

generation of control signals.

• Traceability: The execution of an

instruction is straightforward to

trace, making it easy to observe

which functional blocks are active

and how multiplexers are switched

based on the instruction's OpCode.

The model is implemented using VHDL 

(Very High-Speed Integrated Circuit 

Hardware Description Language) at the 
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Register Transfer Level (RTL). RTL 

modeling describes the flow of data between 

hardware registers and how functional units 

transform that data. VHDL is chosen 

because it allows for a clear, structural, and 

behavioral description of the hardware 

components, making the design suitable for 

both simulation and eventual synthesis onto 

a Field-Programmable Gate Array (FPGA). 

II. Single-Cycle MIPS 

Microarchitecture Design 

The successful modeling of the MIPS 

processor hinges on the design of two 

primary functional components: the 

Datapath (where data is processed) and the 

Control Unit (which orchestrates the 

operations). This section details the design 

of these elements. Fig. 1 presents overall 

microarchitecture in adherence to the single-

cycle principle. 

2.1. The Single-Cycle Datapath 

Architecture 

The datapath represents the collection of 

functional units - registers, ALUs, 

memories, and interconnecting buses -

required for instruction execution. Since the 

architecture is single-cycle, the datapath 

must contain enough hardware to complete 

every instruction within one clock tick, 

although only the required units are active 

for any given instruction. 

The instruction execution in the single-

cycle model passes through five conceptual 

phases in sequence: 

Instruction Fetch (IF): The instruction 

is read from the Instruction Memory based 

on the address stored in the Program Counter 

(PC). The PC is incremented by 4 for the 

next sequential instruction. 

Instruction Decode (ID): The 

instruction is decoded, register operands are 

identified, and the Register File reads the 

necessary values from the registers specified 

by the rs and rt fields. 

Execute (EX): The Arithmetic Logic 

Unit (ALU) performs the required operation 

(arithmetic, logical, or address calculation 

for memory access/branching). 

Fig. 1. Compiled Datapath and required Control Unit 
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Memory Access (MEM): If the 

instruction is a Load or Store, data is read 

from or written to the Data Memory. 

Write Back (WB): The result (from the 

ALU or Data Memory) is written back to the 

Register File. 

The following components form the 

datapath, modeled at the RTL using VHDL: 

Program Counter (PC) and PC Adder: 

The PC holds the address of the current 

instruction. A dedicated Adder calculates the 

address of the next sequential instruction 

(PC + 4). Logic is included to handle updates 

from branch and jump instructions. 

Instruction Memory: A component 

modeled as a large array of registers, 

responsible for storing and retrieving the 32-

bit instruction word based on the address 

provided by the PC. 

Register File: A crucial component 

implemented with two read ports and one 

write port. It receives two 5-bit register 

addresses (rs and rt) and outputs their 

contents simultaneously. The write 

operation is controlled by the RegWrite 

control signal. 

Arithmetic Logic Unit (ALU): The 

ALU performs all computational tasks. It 

receives two 32-bit inputs and performs a 

function (e.g., ADD, SUB, AND, OR) 

determined by the 4-bit ALU Control signal, 

which is derived from the main Control Unit. 

Data Memory: Modeled to support both 

read and write operations, controlled by the 

MemRead and MemWrite signals. 

2.2. The Control Unit Design 

The Control Unit is responsible for 

generating all the necessary control signals 

that direct the flow of data through the 

datapath and specify the operation of the 

functional units. Its input is primarily the 6-

bit OpCode (bits 31–26) of the instruction 

being executed. 

The Control Unit is typically 

implemented as combinational logic. For 

each instruction OpCode, the unit must 

assert a specific set of output signals. Table 

1 presents main part of them. 

Table 1. Control signals 
Signal Function 

RegDst Selects the destination register for the Write 

Back phase (Rt for I-Type, Rd for R-Type). 

ALUSrc Selects the second ALU operand (Read Data 2 

from Register File or Sign-Extended Immediate 

Value). 

MemtoReg Selects the data source for the Register File 

write (ALU Result or Data Memory output). 

RegWrite Enables writing the result back into the Register 

File. 

MemRead Enables reading from Data Memory (lw 

instruction). 

MemWrite Enables writing to Data Memory (sw 

instruction). 

Branch Enables the Program Counter to branch if the 

ALU Zero flag is set (for beq). 

Jump Enables the Program Counter to take the 

unconditional jump address. 

The detailed logic mapping between the 

instruction OpCode/Funct field and these 

control signals forms the core of the Control 

Unit’s VHDL implementation. 

III. VHDL Implementation and

Verification 

This section describes the practical 

realization of the Single-Cycle MIPS 

Microarchitecture using VHDL and details 

the methodology employed to verify the 

model's functional correctness through 

simulation, which is crucial for establishing 

its reliability as an educational tool. 

3.1. Integration and RTL Modeling 

The VHDL project utilizes an RTL 

modeling approach [3] [4] where the 

processor is composed by processes and 

signals interconnecting the processes, 

describing the components detailed in 

Section II (Control Unit, ALU, Register File, 

Memories). 

Each functional block (e.g., ALU, 

Register File, PC) is modeled as a separate 

VHDL process. The signals connecting 

these components correspond directly to the 

data and control lines illustrated in the  
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Datapath Block Diagram. 

Memory Implementation: Both the 

Instruction Memory and Data Memory are 

implemented as arrays within the VHDL 

code, often initialized with test instructions 

and data to ensure a controlled simulation 

environment. 

3.2. Simulation Methodology and Test 

Programs 

Verification is performed using a VHDL 

Testbench, which serves as the external 

environment interacting with the processor 

model. 

The Testbench provides the necessary 

clock and reset signals (clk, rst) and 

monitors the internal and output signals of 

the MIPS processor (e.g., PC value, Register 

File contents, Data Memory access). 

A sequence of MIPS instructions is pre-

loaded into the Instruction Memory 

component of the model (fig. 2). The chosen 

instruction set covers the basic R-type, 

Load/Store, and Branch operations. 

Fig. 2. Preloaded test program in the 

instruction memory 

To demonstrate correct operation for 

educational purposes, test cases include 

programs designed to: 

• Arithmetic: Verify R-type instruction

ADD and I-type instruction ADDI by

checking if the result is correctly

written back to the destination register

(fig. 3 and fig. 4).

• Data Transfer: Verify Load (LW) and

Store (SW) operations by confirming

that the ALU calculates the correct

memory address and that the data is

transferred between the Data Memory

and the Register File (fig. 5 and fig. 6).

• Control Flow: Verify Branch Not

Equal (BNE) by ensuring the Program

Counter updates correctly to the

branch target address only when the

ALU's zero flag is not set (fig. 7).

3.3. Simulation Results and Educational 

Demonstration 

The simulation results, typically 

presented as waveform diagrams, provide 

visual proof of the processor's functionality. 

For an educational model, these traces are 

vital for correlating the assembly code with 

hardware behavior. 

The waveform in figure 3 clearly shows 

the correct assertion of control signals for an 

R-Type instruction. Specifically, the Control 

Unit asserts the RegDst and RegWrite 

signals, directing the result to the destination 

register specified by the R10 field. The 

values read from the source registers (R8 and 

R9) are routed to the ALU inputs (A and B), 

where the requested operation (addition) is 

performed. The result from the ALU 

(aluRes) is successfully written to the 

Register File during the rising edge of the 

next clock cycle, confirming the model's 

functional integrity for fundamental 

arithmetic operations. 
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Fig. 3. Simulation result of the model showing 
execution of the instruction ADD R10, R8, R9 

Figure 4 shows the tracing of the 
execution of the I-type arithmetic instruction 
ADDI R9, R8, 10. The ADDI instruction 
demonstrates the use of immediate values 
and the ALUSrc control signal. The 
simulation shows that the Control Unit 
asserts ALUSrc = 1. This directs the sign-
extended 32-bit immediate value to the 
second input of the ALU, bypassing the 
second read port of the Register File. The 
ALU result is routed to the register specified 
by the Rt field, as is standard for I-Type 
arithmetic. The value read from the source 
register (R8) is correctly added to the sign-
extended immediate value (10) by the ALU, 
and the resulting sum is written to the 
destination register (R9) upon the next clock 
edge. This verifies the correct 
implementation of the sign-extension unit 
and the routing logic. 

Fig. 4. Simulation result of the model showing 
execution of the instruction ADDI R9, R8, 10 

Figure 5 presents the tracing of the 

execution of the store word instruction SW 

R8, 9(R9). The simulation waveform 

demonstrates the memory write path and 

confirms the following: The Control Unit 

asserts MemWrite = '1', indicating a write 

operation to the Data Memory. Critically, 

RegWrite is asserted to '0' since no data is 

being written back to the Register File; The 

ALU, instructed by the aluCtrl signal, 

calculates the effective memory address by 

summing the contents of the base register 

(R9) and the sign-extended 16-bit immediate 

offset (9); The value to be stored, read from 

the Register File's second read port (Register 

R8), is routed directly to the input of the 

Data Memory; Upon the rising edge of the 

clock, the Data Memory writes the content 

of R8 to the calculated effective address. 

This verifies the correct functionality of the 

address calculation logic and the memory 

write mechanism. 

Figure 6 demonstrates the tracing of the 

execution of the load word instruction LW 

R8, 8(R9). The LW instruction is the 

counterpart (or inverse operation) to SW and 

demonstrates the memory read path 

followed by a write-back to the register file. 

The simulation waveform confirms the 

following: The Control Unit asserts both 

MemRead = '1' (to read from Data Memory) 

and RegWrite = '1' (to update the Register 

File). Since the data comes from memory, 

MemtoReg must be set to select the Data 

Memory output; Like SW, the ALU 

calculates the effective memory address by 

summing the contents of the base register 

(R9) and the sign-extended 16-bit immediate 

offset (8); The calculated address is routed 

to the Data Memory's address input. The 32-

bit data retrieved from the Data Memory is 

then routed back toward the Register File; 

The retrieved data is written back to the 

destination register (R8) upon the rising 

edge of the next clock cycle. This confirms 

the correct implementation of the load 

operation and the memory-to-register data 

path. 
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Fig. 5. Simulation result of the model showing 

execution of the instruction SW R8, 9(R9) 

The tracing of the control flow instruction 

Branch Not Equal is presented in figure 7. 

This demonstration is key to understanding 

how the processor handles conditional 

control flow when the condition is not met. 

For the instruction BNE R10, R8, -5, the 

processor performs the following: The ALU 

performs a subtraction between the contents 

of source registers R10 and R8. The Zero 

Flag is set to '0' if the values are not equal, 

satisfying the branch condition; The Control 

Unit asserts the signal BrNotEq, which is 

based on the BNE OpCode, indicating a 

conditional branch is active. The target 

address is calculated by adding the sign-

extended, shifted offset (-5 * 4 = -20 bytes) 

to the PC + 4 value; The dedicated branch 

logic checks for the condition: (BrNotEq 

AND NOT Zero). If this condition is TRUE 

(meaning the registers are not equal), the 

logic selects the calculated branch target 

address; The simulation trace clearly shows 

the Program Counter (PC) being updated 

with the calculated target address (PC + 4 - 

20), resulting in the next instruction being 

executed from a previous memory location, 

demonstrating a successful backward jump. 

Fig. 6. Simulation result of the model showing 

execution of the instruction LW R8, 10(R9) 

The successful simulation and 

verification of these core instructions 

confirm the functional correctness of the 

Single-Cycle MIPS model, validating its 

reliability as a hands-on tool for teaching 

Computer Architecture concepts. 

The complete VHDL source code, 

including the Testbench necessary for 

simulation, is publicly available to support 

collaborative education and reproducibility. 

The project repository can be accessed at: 

https://github.com/pminev-debug/mipsEdu. 

Fig. 7. Simulation result of the model showing 

execution of the instruction BNE R10, R8, -5 
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CONCLUSION 

This report successfully presented the 

design, VHDL modeling, and verification of 

a Single-Cycle MIPS Microarchitecture 

specifically adapted as an educational tool 

for computer architecture courses. The 

primary objective of creating a simple, 

transparent, and functionally correct model 

was achieved. 

The key accomplishments include: 

• Selection and Justification: The choice

of the MIPS ISA and the Single-Cycle

model was rigorously justified on

pedagogical grounds, prioritizing ease of

understanding and traceability over

performance complexity.

• RTL Design: The processor's Datapath

and Control Unit were designed and

modeled at the Register Transfer Level

(RTL) using VHDL, ensuring that the

model is suitable for both simulation and

hardware synthesis.

• Verification: Comprehensive testing

using a VHDL Testbench demonstrated

the functional correctness of the model

across core instruction types (R-type,

Load/Store, and Branching). The

simulation waveforms provide clear

visual proof of data flow and control

signal assertion during instruction

execution, making them invaluable for

instructional demonstrations.

The result is a reliable and modular 

hardware description that effectively bridges 

the gap between theoretical instruction set 

architecture and practical digital hardware 

implementation. 

While the Single-Cycle model serves its 

purpose as an introductory tool, future work 

can expand the project to introduce concepts 

related to performance and optimization: 

• Transition to Pipelined Architecture:

The most critical extension would be to

transform the single-cycle model into a

Five-Stage Pipelined MIPS Processor.

This would introduce the challenges of 

data hazards, control hazards, and 

require the implementation of solutions 

like forwarding units and branch 

prediction, representing the next level of 

complexity in computer architecture 

education. 

• Performance Analysis: Implementing

the design on a physical FPGA device

would allow for real-world

measurements of clock speed and

latency, providing a practical dimension

to the theoretical performance analysis.

• Graphical User Interface (GUI)

Integration: Developing a front-end

interface to visualize the state of the

Register File, Data Memory, and the

active path lights during execution

would greatly enhance the model's utility

as a teaching aid.
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