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Abstract 

This work introduces a dynamic multi-agent framework for automated testbench generation in hardware 

verification, leveraging large language models (LLMs), cocotb, and Verilator. The system decomposes verification 

into specialized agent roles, including specification parsing, testbench synthesis, stimuli generation, coverage 

monitoring, and iterative refinement. Unlike naïve prompting, the closed-loop architecture ensures executable and 

reusable cocotb harnesses while systematically improving coverage. Experimental evaluation demonstrates 

functional coverage of 93.7% (±2.1), a top-1 pass rate of 82.5%, and an average time-to-first-test of 1.4 hours, 

outperforming baseline LLM-driven methods and approaching recent automated UVM-based frameworks. The 

reduced refinement iterations further highlight the robustness and correctness of generated artifacts. While not 

yet achieving coverage saturation in domain-specific tasks, the modular agent design enables extensibility to 

larger RTL designs, heterogeneous simulators, and integration of advanced strategies such as reinforcement 

learning. These results demonstrate that LLM-driven multi-agent workflows provide a scalable and efficient 

methodology for reducing human effort in verification closure, establishing a promising direction for AI-assisted 

hardware verification.  

Keywords: hardware verification, large language models, cocotb, Verilator, multi-agent systems, functional 

coverage. 

INTRODUCTION 

Hardware verification remains one of the 

most resource-intensive and error-prone 

stages in digital design, where creating 

complete test harnesses, generating effective 

stimuli, and closing coverage gaps require 

significant manual effort and specialised 

knowledge [1]. Recent advances in machine 

learning and large language models (LLMs) 

enable workflows in which modular AI 

agents interpret specifications, generate 

cocotb-based test harnesses and Python 

stimuli, control simulator runs under 

Verilator, and iteratively refine tests using 

coverage feedback [2–5]. This paper 

examines a closed-loop, multi-agent 

architecture that employs LLMs to produce 

cocotb drivers, monitors, and scoreboards, 

coordinates execution through a ZeroMQ 

message bus, and evaluates performance 

using functional coverage, top-1 pass rate, 

time-to-first-test, and average refinement 

iterations. The central question addressed is 

whether LLM-driven agents can 

automatically generate practical, reusable 

cocotb testbenches and achieve coverage 

closure comparable to human-authored 

harnesses while significantly reducing 

development time. Experimental evaluation 

and reproducible metadata quantify trade-

offs between automation, correctness, and 

engineering effort. 

Traditional verification practices often 

rely on constrained-random testing and 

manual UVM-based infrastructures that, 

despite their power, impose considerable 

setup complexity and engineering overhead. 

These methods scale poorly for rapidly 
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evolving hardware or incomplete 

specifications, and their dependence on 

human expertise in stimulus design and 

coverage analysis limits reproducibility and 

increases the likelihood of verification gaps. 

In contrast, LLM-driven agents can rapidly 

generate and adapt verification artifacts, 

reducing entry barriers and enhancing 

automation in coverage closure. This 

transition positions AI-assisted verification 

as not only a productivity enhancer but also 

a potential paradigm shift in digital design 

workflows. 

METHODOLOGY 

The multi-agent system is organized as 

cooperating agents that parse the DUT, 

synthesize a cocotb-compatible testbench, 

generate stimuli, run simulations under a 

cocotb harness with Verilator, collect 

coverage, and produce reports, as shown on 

Fig. 1. Agents communicate via ZeroMQ 

and persist artifacts in a shared knowledge 

base indexed by DUT id and run id. The 

canonical representation passed between 

agents is a structured DUT JSON that 

contains signal metadata, inferred 

transactions, and mapped verification intents 

when natural-language requirements are 

provided. The Specification Parser Agent 

accepts SystemVerilog or Verilog RTL and 

optional textual requirements. Static RTL 

analysis extracts module ports, widths, 

directions, clocks, resets, and candidate 

transaction boundaries. Lightweight NLP is 

applied to map requirement phrases to 

functional coverage points when text is 

supplied. The canonical DUT JSON 

produced by the parser contains signal 

descriptors, timing hints, and protocol 

fragments, and is saved to the shared 

knowledge base for downstream use and 

provenance. 

The Testbench Generator Agent 

consumes the DUT JSON and renders 

cocotb-compatible artifacts using Jinja2 

templates. The produced artifacts consist of 

an optional SystemVerilog interface 

wrapper, cocotb-based Python driver and 

monitor coroutines, a Python scaffold for 

inserting expected results into the 

scoreboard, and essential assertions 

expressed either as Python checks or as 

simulator-supported constructs. 

Fig. 1. Multi-Agent System Architecture 
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Two generation modes are supported by 

template parameters: strict mode enforces 

full project layout and explicit interface 

bindings, while permissive mode produces 

compact harness code for faster iteration. 

Constrained-random and directed stimuli 

are generated by the Stimulus Generator 

Agent and realized as Python coroutines 

within the cocotb stimulus library. Constraint 

semantics are derived from the DUT JSON 

and from optional user constraints. For 

expected-value computation, Python reference 

models are executed directly within the cocotb 

harness; these models are used by the 

scoreboard to compute expected outputs and 

to validate transactions. 

Monitoring and checking are performed 

by the Monitor Agent and the Scoreboard 

Agent implemented in Python under cocotb. 

The Monitor Agent observes interface 

signals via cocotb APIs, reconstructs 

transactions, timestamps events, and 

publishes transaction records to ZeroMQ. 

The Scoreboard Agent consumes published 

transactions and compares actual results 

with expected values computed by the 

Python reference model; mismatch records 

are annotated with contextual metadata to 

support automated repair.  

Our evaluation focuses on four 

complementary metrics that capture both 

effectiveness and efficiency of the 

verification flow, as shown in Table I. 

Functional coverage (%) quantifies the 

fraction of predefined bins exercised during 

simulation and is reported as mean ± 

standard deviation across repeated runs. 

Top-1 pass rate (pass@1) measures the 

proportion of generated testbenches that 

meet correctness thresholds on the first 

attempt, reported as a percentage. Time-to-

first-test records the human-hours required 

from DUT specification input to a runnable 

cocotb testbench, expressed in hours along 

with the speedup factor relative to manual 

authoring. Finally, refinement iterations 

reflect the average number of generate–

simulate–refine loops needed to converge on 

an acceptable testbench, again reported as 

mean ± standard deviation. 

Table I. Evaluation metrics and reporting targets 

Metric Definition Format 

Functional 

coverage (%) 

Fraction of 

functional bins 

exercised 

Mean ± std across 

N runs 

Top-1 pass rate 
(pass@1) 

Proportion of 
generated TBs 

meeting threshold 

on first try 

Percentage 

Time-to-first-test Human-hours 

required from 

DUT input to 

runnable test 

Hours and 

speedup factor vs 

manual 

Functional 

coverage (%) 

Fraction of 

functional bins 

exercised 

Mean ± std across 

N runs 

Simulation runs are driven by a simulator 

adapter layer that standardizes invocation 

and result extraction. For open workflows, 

Verilator is used together with cocotb; the 

adapter invokes Verilator, runs the cocotb 

test scripts, and extracts simulator-

dependent logs, waveform files (VCD), and 

coverage exports when available. The 

Coverage Collector ingests these simulator 

outputs and maps functional coverage bins 

to DUT JSON requirements; coverage deltas 

are computed and stored for follow-up. 

The Regression Manager Agent 

consumes uncovered bin lists and prioritizes 

follow-up tests using configurable heuristics 

such as seed diversification and targeted 

sequence generation for uncovered bins. 

Regression jobs are scheduled across 

available compute resources and results are 

aggregated into cumulative coverage 

timelines in the knowledge base. The 

Reporter Agent collects ZeroMQ streams 

and stored artifacts to produce final reports 

that include pass/fail summaries, coverage 

matrices, waveform references, and per-

iteration failure traces. 

Fig. 2 illustrates the compact 

generate→simulate→analyze→decide loop 

used to iteratively refine automatically 

generated cocotb test harnesses. The initial  
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phase, referred to as the Generator, takes the 
canonical DUT JSON as input and produces 
all runnable artifacts required for a single 
job, including Python cocotb modules, 
optional lightweight SystemVerilog 
interface wrappers, and a deterministic seed. 
Those outputs are packaged as 
testbench_artifacts together with the seed 
and dispatched to the Simulator Adapter. 
The Simulator Adapter prepares an isolated 
workspace for each run, executes Verilator 
alongside the cocotb test modules, and 
generates a sim_results payload containing 
the waveform file (wave.vcd), execution 
logs, simulator exit status, and any raw 
coverage exports (coverage.xml). The 
Simulator Adapter publishes the sim_results 
message on ZeroMQ and persists the run 
manifest under the associated run_id. 

Fig. 2. Generate, simulate, analyze, decide loop 

The Analyzer step consumes the 
simulator outputs and performs combined 
runtime processing that in a full system is 
implemented by the Monitor, Scoreboard, 
and Coverage Collector. From sim_results 
the Analyzer reconstructs transactions, 
extracts assertion and scoreboard outcomes, 
and computes functional coverage bins. The 
Analyzer then emits coverage_metrics and 
mismatch_info to the Regression Manager 
and publishes transactions plus a concise 
summary message on ZeroMQ for Reporter 
and archival. All messages are tagged with 
the run_id and seed to preserve provenance 
and to allow correlation between 
transactions, coverage, and the original DUT 
JSON. 

The Regression Manager receives 

coverage and mismatch summaries and 
applies policy to decide whether to stop or to 
request further refinement. When additional 
testing is required, directives (for example, 
targeted_bins and a new_seed) are returned 
to the Generator, which synthesizes updated 
artifacts and restarts the loop.  

Convergence and stopping criteria are 
enforced by thresholds on functional 
coverage, limits on refinement iterations, or 
budgeted compute time. Average refinement 
iterations, top-1 pass rate, time-to-first-test, 
and functional coverage per run are recorded 
as primary evaluation metrics to quantify the 
behavior of this closed-loop process. 

LLM interactions are encapsulated in 
agents responsible for specification 
interpretation and for code-templating 
assistance, using ChatGPT 5 as the model of 
choice. Prompts are constructed from the 
DUT JSON and from curated cocotb 
templates. Before promotion, the generated 
code undergoes validation through a style 
linter and a brief compile-time smoke test 
performed with Verilator and cocotb. 
Compilation or simulation failures trigger an 
LLM-assisted repair routine that suggests 
edits; suggested edits are validated through 
the same quick-compile loop before 
acceptance. Optionally, model preferences 
may be refined offline via RL-style fine-
tuning using simulator pass/fail outcomes as 
preference labels. 

Benchmarks are run on a curated corpus 
of small RTL designs and on the 
VerilogEval/HDLBits-derived dataset for 
comparability [6, 7]. Each experimental run 
records DUT revision, template version, 
LLM model and temperature, simulator 
settings, random seeds, and the sequence of 
artifacts to ensure reproducibility. 

A conservative acceptance gate is applied 
before generated files enter the regression 
pool. Files must pass a style linter, a minimal 
compilation smoke test with Verilator plus 
cocotb, and an expected-value consistency 
check against the Python reference model. 
Only artifacts that pass these checks are 
scheduled for full regression, which prevents 
accumulation of failing scaffolding and 
reduces wasted simulation cycles. 
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RESULTS AND DISCUSSION 

The results in Table II indicate a 
substantial improvement in testbench 
generation performance when utilizing the 
AI Agent compared to the Naïve LLM 
approach. Functional coverage achieved by 
the AI Agent reached 93.7% with low 
variability (±2.1%), markedly higher than 
the 61.4% (±7.8%) attained by the baseline.  

Table III. Performance metrics 

Metric AI Agent Naïve - LLM 

Functional 
coverage (%) 

93.7 ± 2.1 61.4 ± 7.8 

Top-1 pass rate 
(pass@1) 

82.5% 27.3% 

Time-to-first-test 1.4 h 5.6 h 

Refinement 
iterations 

2.3 ± 0.6 6.8 ± 1.9 

Similarly, the Top-1 pass rate was 
significantly improved, with the AI Agent 
achieving 82.5% versus 27.3% for the Naïve 
LLM, demonstrating a stronger ability to 
produce correct testbenches on the first 
attempt (Fig. 3). Efficiency metrics also 
favored the AI Agent, with the time-to-first-
test reduced to 1.4 hours compared to 5.6 
hours and the number of refinement 
iterations required decreased to 2.3 (±0.6) 
from 6.8 (±1.9). These findings collectively 
indicate that the AI Agent approach 
enhances both effectiveness and efficiency 
in automated test generation, reducing the 
number of iterations and total time required 
while achieving higher coverage and success 
rates. 

Fig. 3. AI Agent vs. Naïve LLM approach 
comparison 

AutoBench reports a coverage-driven 

pass@1 of ≈97.3% on combinational tasks 

[8]. In comparison, our AI Agent pipeline 

achieved a top-1 pass@1 of 82.5% with an 

average of 2.3 refinement iterations to reach 

the coverage threshold. While this is lower 

than AutoBench’s near-perfect first-try 

success rate, our method requires 

substantially fewer refinement loops, 

indicating that the generated testbenches are 

already closer to executable form even on 

the first attempt. 

While Bhandari et al. report driving FSM 

transition coverage to 100% with iterative 

re-prompting [9] our approach reached a 

mean functional coverage of 93.7% ± 2.1 

after an average of 2–3 iterations. This falls 

short of their perfect coverage but remains 

significantly higher than the Naïve LLM 

baseline (61.4% ± 7.8), demonstrating the 

effectiveness of targeted agent-driven 

refinement. 

UVM₂ demonstrates ≈89.6% functional 

coverage and reports up to ≈38.8× 

productivity gains [10]. Our pipeline 

outperformed UVM₂ on coverage (93.7% vs. 

89.6%) and achieved a reduction in time-to-

first-test to 1.4 h, representing a ≈4× speedup 

relative to manual development. Although 

this speedup is lower than UVM₂’s 

maximum, we emphasize that our stricter 

cocotb-based environment requires 

integrating coverage collection, scoreboard 

checks, and waveform analysis in a single 

flow, which inherently imposes higher setup 

overhead than more template-relaxed 

systems. 

CONCLUSION 

This work presented a dynamic multi-

agent system for automated, coverage-based 

testbench synthesis in SystemVerilog using 

cocotb, Verilator, and large language 

models. The closed-loop architecture 

comprises specialized agents for parsing 

specifications, generating artifacts, 

producing stimuli, monitoring execution, 

collecting coverage, and refining tests, 

achieving substantial gains over naïve LLM 

https://creativecommons.org/licenses/by/4.0/?ref=chooser-v1
http://www.doi.org/10.70456/


“UNITECH – SELECTED PAPERS” vol. 2025 

Published by Technical University of Gabrovo 

ISSN 2603-378X 

 

This is an open access article licensed under 

Creative Commons Attribution 4.0 International 

doi: www.doi.org/10.70456/.......................... 

prompting and previous automated 

verification methods. Experimental results 

show functional coverage of 93.7% (±2.1), a 

top-1 pass rate of 82.5%, and an average 

time-to-first-test of 1.4 hours, approaching 

the performance of advanced UVM and 

coverage-driven frameworks. The reduced 

refinement iterations indicate that the system 

can produce reusable cocotb harnesses with 

minimal manual input. Although it does not 

yet match domain-specific coverage results, 

the framework offers an effective balance 

between automation, accuracy, and 

efficiency. Its modular design allows 

extension to protocol inference, assertion 

synthesis, and larger designs. Future work 

will target scalability across simulation 

backends and integration of reinforcement 

learning for optimized test generation, 

advancing AI-assisted verification toward 

practical, real-world deployment. 

Acknowledgments: This study was supported 

by the Ministry of Science, Technological 

Development and Innovation of the Republic 

of Serbia, and these results are parts of 

Grant No. 451-03-136/2025-03/200132 with 

the University of Kragujevac – Faculty of 

Technical Sciences Čačak. 

REFERENCE 
[1] Zhang Z., Szekely B., Gimenes P., Chadwick 

G., McNally H., Cheng J., Mullins R., Zhao 

Y. “LLM4DV: Using Large Language 

Models for Hardware Test Stimuli 

Generation.” 2025 IEEE 33rd Annual 

International Symposium on Field-

Programmable Custom Computing Machines 

(FCCM), 2025, pp. 133-137. 

[2] Zhou J., Ji Y., Wang N., Hu Y., Jiao X., Yao 

B., Fang X., Zhao S., Guan N., Jiang Z. 

“Insights from Rights and Wrongs: A Large 

Language Model for Solving Assertion 

Failures in RTL Design.” arXiv preprint 

arXiv:2503.04057, 2025. ISBN: 978-954-

683-691-5. 

[3] Fang W., Li M., Li M., Yan Z., Liu S., Zhang 

H., Xie Z. “AssertLLM: Generating and 

Evaluating Hardware Verification Assertions 

from Design Specifications via Multi-LLMs.” 

arXiv preprint arXiv:2402.00386, 2024. 

ISBN: 978-954-683-691-5. 

[4] Ma R., Yang Y., Liu Z., Zhang J., Li M., 

Huang J., Luo G. “VerilogReader: LLM-

Aided Hardware Test Generation.” IEEE 

LLM-Aided Design Workshop (LAD), 2024. 

ISBN: 978-954-683-691-5. 

[5] Zhao Y., Wu Z., Zhang H., Yu Z., Ni W., Ho 

C.-T., Ren H., Zhao J. “PRO-V: An Efficient 

Program Generation Multi-Agent System for 

Automatic RTL Verification.” 

arXiv:2506.12200, 2025. ISBN: 978-954-

683-691-5. 

[6] Lv J., Zuo S., Cheng X., Li Z., Zhang W., 

Zhang D., Qian Z. “VerilogEval: Evaluating 

Large Language Models for Verilog Code 

Generation.” Dataset. GitHub/Zenodo, 2023. 

Available at: 

https://github.com/NVlabs/VerilogEval. 

[7] Harris S. L. “HDLBits: A Collection of 

Verilog Practice Problems.” Dataset. 

University of Toronto, 2016. Available at: 

https://hdlbits.01xz.net. 

[8] Qiu R., Zhang G. L., Drechsler R., 

Schlichtmann U., Li B. “AutoBench: 

Automatic Testbench Generation and 

Evaluation Using LLMs for HDL Design.” 

arXiv preprint arXiv:2407.03891, 2024. 

[Online]. Available: 

https://doi.org/10.48550/arXiv.2407.03891. 

ISBN: 978-954-683-691-5. 

[9] Bhandari J., Knechtel J., Narayanaswamy R., 

Garg S., Karri R. “LLM-Aided Testbench 

Generation and Bug Detection for Finite-

State Machines.” arXiv preprint 

arXiv:2406.17132, 2024. [Online]. 

Available: 

https://doi.org/10.48550/arXiv.2406.17132. 

ISBN: 978-954-683-691-5. 

[10] Ye J., Hu Y., Xu K., Pan D., Chen Q., Zhou 

J., Zhao S., Fang X., Wang X., Guan N., Jiang 

Z. “From Concept to Practice: an Automated 

LLM-aided UVM Machine for RTL 

Verification.” arXiv preprint 

arXiv:2504.19959, 2025 (preprint). [Online]. 

Available: 

https://doi.org/10.48550/arXiv.2504.19959. 

https://creativecommons.org/licenses/by/4.0/?ref=chooser-v1
http://www.doi.org/10.70456/

