uNIlECE

INTERNATIONAL SCIENTIFIC
CONFERENCE
20-22 November 2025, GABROVO

UNIIECH

SELECTED PAPERS

A DYNAMIC MULTI-AGENT SYSTEM FOR COVERAGE-BASED
TESTBENCH SYNTHESIS IN SYSTEMVERILOG

Veljko Lonéarevi¢®, Mihailo KneZevi¢, Olga Risti¢, Vanja Lukovié¢, Sanja Antié

Faculty of Technical Sciences in Cacak, University of Kragujevac, Svetog Save 635,
Cacak, Serbia
*Corresponding author: veljko.loncarevic@fin.edu.rs

Abstract

This work introduces a dynamic multi-agent framework for automated testbench generation in hardware
verification, leveraging large language models (LLMs), cocotb, and Verilator. The system decomposes verification
into specialized agent roles, including specification parsing, testbench synthesis, stimuli generation, coverage
monitoring, and iterative refinement. Unlike naive prompting, the closed-loop architecture ensures executable and
reusable cocotb harnesses while systematically improving coverage. Experimental evaluation demonstrates
Sfunctional coverage of 93.7% (£2.1), a top-1 pass rate of 82.5%, and an average time-to-first-test of 1.4 hours,
outperforming baseline LLM-driven methods and approaching recent automated UVM-based frameworks. The
reduced refinement iterations further highlight the robustness and correctness of generated artifacts. While not
yet achieving coverage saturation in domain-specific tasks, the modular agent design enables extensibility to
larger RTL designs, heterogeneous simulators, and integration of advanced strategies such as reinforcement
learning. These results demonstrate that LLM-driven multi-agent workflows provide a scalable and efficient
methodology for reducing human effort in verification closure, establishing a promising direction for Al-assisted
hardware verification.

Keywords: hardware verification, large language models, cocotb, Verilator, multi-agent systems, functional
coverage.

INTRODUCTION
Hardware verification remains one of the

message bus, and evaluates performance
using functional coverage, top-1 pass rate,

most resource-intensive and error-prone
stages in digital design, where creating
complete test harnesses, generating effective
stimuli, and closing coverage gaps require
significant manual effort and specialised
knowledge [1]. Recent advances in machine
learning and large language models (LLMs)
enable workflows in which modular Al
agents interpret specifications, generate
cocotb-based test harnesses and Python
stimuli, control simulator runs under
Verilator, and iteratively refine tests using
coverage feedback [2-5]. This paper
examines a closed-loop, multi-agent
architecture that employs LLMs to produce
cocotb drivers, monitors, and scoreboards,
coordinates execution through a ZeroMQ

“UNITECH — SELECTED PAPERS” vol. 2025

time-to-first-test, and average refinement
iterations. The central question addressed is
whether LLM-driven agents can
automatically generate practical, reusable
cocotb testbenches and achieve coverage
closure comparable to human-authored
harnesses while significantly reducing
development time. Experimental evaluation
and reproducible metadata quantify trade-
offs between automation, correctness, and
engineering effort.

Traditional verification practices often
rely on constrained-random testing and
manual UVM-based infrastructures that,
despite their power, impose considerable
setup complexity and engineering overhead.
These methods scale poorly for rapidly

This is an open access article licensed under

Published by Technical University of Gabrovo Creative Commons Attribution 4.0 International
ISSN 2603-378X BY doi: www.doi.org/10.70456/............ccueeuuvn...

https://creativecommons.org/licenses/by/4.0/?ref=chooser-v1
http://www.doi.org/10.70456/

evolving hardware = or incomplete
specifications, and their dependence on
human expertise in stimulus design and
coverage analysis limits reproducibility and
increases the likelihood of verification gaps.
In contrast, LLM-driven agents can rapidly
generate and adapt verification artifacts,
reducing entry barriers and enhancing
automation 1in coverage closure. This
transition positions Al-assisted verification
as not only a productivity enhancer but also
a potential paradigm shift in digital design
workflows.

METHODOLOGY

The multi-agent system is organized as
cooperating agents that parse the DUT,
synthesize a cocotb-compatible testbench,
generate stimuli, run simulations under a
cocotb harness with Verilator, collect
coverage, and produce reports, as shown on
Fig. 1. Agents communicate via ZeroMQ
and persist artifacts in a shared knowledge
base indexed by DUT id and run id. The
canonical representation passed between
agents is a structured DUT JSON that
contains signal metadata, inferred

Shared Knowledge

Base »>

transactions, and mapped verification intents
when natural-language requirements are
provided. The Specification Parser Agent
accepts SystemVerilog or Verilog RTL and
optional textual requirements. Static RTL
analysis extracts module ports, widths,
directions, clocks, resets, and candidate
transaction boundaries. Lightweight NLP is
applied to map requirement phrases to
functional coverage points when text is
supplied. The canonical DUT JSON
produced by the parser contains signal
descriptors, timing hints, and protocol
fragments, and is saved to the shared
knowledge base for downstream use and
provenance.

The Testbench Generator Agent
consumes the DUT JSON and renders
cocotb-compatible artifacts using Jinja2
templates. The produced artifacts consist of
an optional SystemVerilog interface
wrapper, cocotb-based Python driver and
monitor coroutines, a Python scaffold for
inserting expected results into the
scoreboard, and essential assertions
expressed either as Python checks or as
simulator-supported constructs.

‘ Coverage Collector l

v

‘ Regression Manager ‘
Testbench

DUT
Verilog code Specification

Parser

DUT JSON

buT
Details

Reporter L

Metrics
New run /
stop condition
Testbench Antifacts

Monitor
Generator v y

Transactions

Simulator Adapter

(eocoth + Verilator)

Stimulus

Sequences
L hd

Generator Scoreboard

Results + Coverage + Logs |

ZeroMQ Bus

1

Final Report

Fig. 1. Multi-Agent System Architecture

“UNITECH — SELECTED PAPERS” vol. 2025
Published by Technical University of Gabrovo
ISSN 2603-378X

This is an open access article licensed under

Creative Commons Attribution 4.0 International
BY doi: www.doi.org/10.70456/........cccceveeeeeene..

https://creativecommons.org/licenses/by/4.0/?ref=chooser-v1
http://www.doi.org/10.70456/

Two generation modes are supported by
template parameters: strict mode enforces
full project layout and explicit interface
bindings, while permissive mode produces
compact harness code for faster iteration.

Constrained-random and directed stimuli
are generated by the Stimulus Generator
Agent and realized as Python coroutines
within the cocotb stimulus library. Constraint
semantics are derived from the DUT JSON
and from optional user constraints. For
expected-value computation, Python reference
models are executed directly within the cocotb
harness; these models are used by the
scoreboard to compute expected outputs and
to validate transactions.

Monitoring and checking are performed
by the Monitor Agent and the Scoreboard
Agent implemented in Python under cocotb.
The Monitor Agent observes interface
signals via cocotb APIs, reconstructs
transactions, timestamps events, and
publishes transaction records to ZeroMQ.
The Scoreboard Agent consumes published
transactions and compares actual results
with expected values computed by the
Python reference model; mismatch records
are annotated with contextual metadata to
support automated repair.

Our evaluation focuses on four
complementary metrics that capture both
effectiveness and efficiency of the
verification flow, as shown in Table I.
Functional coverage (%) quantifies the
fraction of predefined bins exercised during
simulation and is reported as mean =+
standard deviation across repeated runs.
Top-1 pass rate (pass@l) measures the
proportion of generated testbenches that
meet correctness thresholds on the first
attempt, reported as a percentage. Time-to-
first-test records the human-hours required
from DUT specification input to a runnable
cocotb testbench, expressed in hours along
with the speedup factor relative to manual
authoring. Finally, refinement iterations
reflect the average number of generate—
simulate—refine loops needed to converge on

“UNITECH — SELECTED PAPERS” vol. 2025

an acceptable testbench, again reported as
mean =+ standard deviation.

Table 1. Evaluation metrics and reporting targets

Metric Definition Format
Functional Fraction of Mean =+ std across
coverage (%) functional bins N runs

exercised
Top-1 pass rate Proportion of Percentage
(pass@1) generated TBs

meeting threshold

on first try
Time-to-first-test Human-hours Hours and

required from speedup factor vs

DUT input to manual

runnable test
Functional Fraction of Mean =+ std across
coverage (%) functional bins N runs

exercised

Simulation runs are driven by a simulator
adapter layer that standardizes invocation
and result extraction. For open workflows,
Verilator is used together with cocotb; the
adapter invokes Verilator, runs the cocotb
test scripts, and extracts simulator-
dependent logs, waveform files (VCD), and
coverage exports when available. The
Coverage Collector ingests these simulator
outputs and maps functional coverage bins
to DUT JSON requirements; coverage deltas
are computed and stored for follow-up.

The Regression Manager Agent
consumes uncovered bin lists and prioritizes
follow-up tests using configurable heuristics
such as seed diversification and targeted
sequence generation for uncovered bins.
Regression jobs are scheduled across
available compute resources and results are
aggregated into cumulative coverage
timelines in the knowledge base. The
Reporter Agent collects ZeroMQ streams
and stored artifacts to produce final reports
that include pass/fail summaries, coverage
matrices, waveform references, and per-
iteration failure traces.

Fig. 2 illustrates the compact
generate—simulate—analyze—decide loop
used to iteratively refine automatically
generated cocotb test harnesses. The initial

This is an open access article licensed under

Published by Technical University of Gabrovo Creative Commons Attribution 4.0 International
ISSN 2603-378X BY doi: www.doi.org/10.70456/............ccueeuuvn...

https://creativecommons.org/licenses/by/4.0/?ref=chooser-v1
http://www.doi.org/10.70456/

phase, referred to as the Generator, takes the
canonical DUT JSON as input and produces
all runnable artifacts required for a single
job, including Python cocotb modules,
optional lightweight SystemVerilog
interface wrappers, and a deterministic seed.
Those outputs are packaged as
testbench_artifacts together with the seed
and dispatched to the Simulator Adapter.
The Simulator Adapter prepares an isolated
workspace for each run, executes Verilator
alongside the cocotb test modules, and
generates a sim_results payload containing
the waveform file (wave.ved), execution
logs, simulator exit status, and any raw
coverage exports (coverage.xml). The
Simulator Adapter publishes the sim_results
message on ZeroMQ and persists the run
manifest under the associated run_id.

Generator Generate .
e Simulator Adapter
(testbench + stimulus)
Decide Simulate
Regression Analyzer
- v
Managcr Analyze (monitor + scoreboard)

Fig. 2. Generate, simulate, analyze, decide loop

The Analyzer step consumes the
simulator outputs and performs combined
runtime processing that in a full system is
implemented by the Monitor, Scoreboard,
and Coverage Collector. From sim_results
the Analyzer reconstructs transactions,
extracts assertion and scoreboard outcomes,
and computes functional coverage bins. The
Analyzer then emits coverage metrics and
mismatch_info to the Regression Manager
and publishes transactions plus a concise
summary message on ZeroMQ for Reporter
and archival. All messages are tagged with
the run_id and seed to preserve provenance
and to allow correlation between
transactions, coverage, and the original DUT
JSON.

The Regression Manager receives

“UNITECH — SELECTED PAPERS” vol. 2025

coverage and mismatch summaries and
applies policy to decide whether to stop or to
request further refinement. When additional
testing is required, directives (for example,
targeted bins and a new_seed) are returned
to the Generator, which synthesizes updated
artifacts and restarts the loop.

Convergence and stopping criteria are
enforced by thresholds on functional
coverage, limits on refinement iterations, or
budgeted compute time. Average refinement
iterations, top-1 pass rate, time-to-first-test,
and functional coverage per run are recorded
as primary evaluation metrics to quantify the
behavior of this closed-loop process.

LLM interactions are encapsulated in
agents responsible for specification
interpretation and for code-templating
assistance, using ChatGPT 5 as the model of
choice. Prompts are constructed from the
DUT JSON and from curated cocotb
templates. Before promotion, the generated
code undergoes validation through a style
linter and a brief compile-time smoke test
performed with Verilator and cocotb.
Compilation or simulation failures trigger an
LLM-assisted repair routine that suggests
edits; suggested edits are validated through
the same quick-compile loop before
acceptance. Optionally, model preferences
may be refined offline via RL-style fine-
tuning using simulator pass/fail outcomes as
preference labels.

Benchmarks are run on a curated corpus
of small RTL designs and on the
VerilogEval/HDLBits-derived dataset for
comparability [6, 7]. Each experimental run
records DUT revision, template version,
LLM model and temperature, simulator
settings, random seeds, and the sequence of
artifacts to ensure reproducibility.

A conservative acceptance gate is applied
before generated files enter the regression
pool. Files must pass a style linter, a minimal
compilation smoke test with Verilator plus
cocotb, and an expected-value consistency
check against the Python reference model.
Only artifacts that pass these checks are
scheduled for full regression, which prevents
accumulation of failing scaffolding and
reduces wasted simulation cycles.

This is an open access article licensed under

Published by Technical University of Gabrovo Creative Commons Attribution 4.0 International
ISSN 2603-378X BY doi: www.doi.org/10.70456/............ccueeuuvn...

https://creativecommons.org/licenses/by/4.0/?ref=chooser-v1
http://www.doi.org/10.70456/

RESULTS AND DISCUSSION

The results in Table II indicate a
substantial improvement in testbench
generation performance when utilizing the
Al Agent compared to the Naive LLM
approach. Functional coverage achieved by
the Al Agent reached 93.7% with low
variability (£2.1%), markedly higher than
the 61.4% (£7.8%) attained by the baseline.

Table 111. Performance metrics

Metric Al Agent Naive - LLM
Functional 93.7+2.1 61.4+78
coverage (%)

Top-1 pass rate 82.5% 27.3%
(pass@1)

Time-to-first-test 14h 5.6h
Refinement 23+0.6 6.8+1.9
iterations

Similarly, the Top-1 pass rate was
significantly improved, with the Al Agent
achieving 82.5% versus 27.3% for the Naive
LLM, demonstrating a stronger ability to
produce correct testbenches on the first
attempt (Fig. 3). Efficiency metrics also
favored the Al Agent, with the time-to-first-
test reduced to 1.4 hours compared to 5.6
hours and the number of refinement
iterations required decreased to 2.3 (£0.6)
from 6.8 (£1.9). These findings collectively
indicate that the AI Agent approach
enhances both effectiveness and efficiency
in automated test generation, reducing the
number of iterations and total time required
while achieving higher coverage and success
rates.

Comparison of Al-Agent vs, Naive LLM Approaches
100 93,7

. Al-Agent
Naive LLM

82.5

Performance

€
orad
L ond! co¥ e
Y
fun

Fig. 3. Al Agent vs. Naive LLM approach
comparison

“UNITECH — SELECTED PAPERS” vol. 2025

AutoBench reports a coverage-driven
pass@1 of =97.3% on combinational tasks
[8]. In comparison, our Al Agent pipeline
achieved a top-1 pass@]1 of 82.5% with an
average of 2.3 refinement iterations to reach
the coverage threshold. While this is lower
than AutoBench’s near-perfect first-try
success rate, our method requires
substantially fewer refinement loops,
indicating that the generated testbenches are
already closer to executable form even on
the first attempt.

While Bhandari et al. report driving FSM
transition coverage to 100% with iterative
re-prompting [9] our approach reached a
mean functional coverage of 93.7% + 2.1
after an average of 23 iterations. This falls
short of their perfect coverage but remains
significantly higher than the Naive LLM
baseline (61.4% + 7.8), demonstrating the
effectiveness of targeted agent-driven
refinement.

UVM: demonstrates ~89.6% functional
coverage and reports up to ~38.8%
productivity gains [10]. Our pipeline
outperformed UVM: on coverage (93.7% vs.
89.6%) and achieved a reduction in time-to-
first-test to 1.4 h, representing a =4 x speedup
relative to manual development. Although
this speedup is lower than UVM:’s
maximum, we emphasize that our stricter
cocotb-based environment requires
integrating coverage collection, scoreboard
checks, and waveform analysis in a single
flow, which inherently imposes higher setup
overhead than more template-relaxed
systems.

CONCLUSION

This work presented a dynamic multi-
agent system for automated, coverage-based
testbench synthesis in SystemVerilog using
cocotb, Verilator, and large language
models. The closed-loop architecture
comprises specialized agents for parsing
specifications, generating artifacts,
producing stimuli, monitoring execution,
collecting coverage, and refining tests,
achieving substantial gains over naive LLM

This is an open access article licensed under

Published by Technical University of Gabrovo Creative Commons Attribution 4.0 International
ISSN 2603-378X BY doi: www.doi.org/10.70456/............ccueeuuvn...

https://creativecommons.org/licenses/by/4.0/?ref=chooser-v1
http://www.doi.org/10.70456/

prompting and previous automated
verification methods. Experimental results
show functional coverage of 93.7% (£2.1), a
top-1 pass rate of 82.5%, and an average
time-to-first-test of 1.4 hours, approaching
the performance of advanced UVM and
coverage-driven frameworks. The reduced
refinement iterations indicate that the system
can produce reusable cocotb harnesses with
minimal manual input. Although it does not
yet match domain-specific coverage results,
the framework offers an effective balance
between automation, accuracy, and
efficiency. Its modular design allows
extension to protocol inference, assertion
synthesis, and larger designs. Future work
will target scalability across simulation
backends and integration of reinforcement
learning for optimized test generation,
advancing Al-assisted verification toward
practical, real-world deployment.

Acknowledgments: This study was supported
by the Ministry of Science, Technological
Development and Innovation of the Republic
of Serbia, and these results are parts of
Grant No. 451-03-136/2025-03/200132 with
the University of Kragujevac — Faculty of
Technical Sciences Cacak.

REFERENCE

[1] Zhang Z., Szekely B., Gimenes P., Chadwick
G., McNally H., Cheng J., Mullins R., Zhao
Y. “LLM4DV: Using Large Language
Models for Hardware Test Stimuli
Generation.” 2025 IEEE 33rd Annual
International ~ Symposium on Field-
Programmable Custom Computing Machines
(FCCM), 2025, pp. 133-137.

[2] Zhou J., Ji Y., Wang N., Hu Y., Jiao X., Yao
B., Fang X., Zhao S., Guan N., Jiang Z.
“Insights from Rights and Wrongs: A Large
Language Model for Solving Assertion
Failures in RTL Design.” arXiv preprint
arXiv:2503.04057, 2025. ISBN: 978-954-
683-691-5.

“UNITECH — SELECTED PAPERS” vol. 2025
Published by Technical University of Gabrovo
ISSN 2603-378X

[3] Fang W.,LiM., Li M., Yan Z., Liu S., Zhang
H., Xie Z. “AssertLLM: Generating and
Evaluating Hardware Verification Assertions
from Design Specifications via Multi-LLMs.”
arXiv preprint arXiv:2402.00386, 2024.
ISBN: 978-954-683-691-5.

[4] Ma R., Yang Y., Liu Z., Zhang J., Li M.,
Huang J., Luo G. “VerilogReader: LLM-
Aided Hardware Test Generation.” IEEE
LLM-Aided Design Workshop (LAD), 2024.
ISBN: 978-954-683-691-5.

[5] Zhao Y., Wu Z., Zhang H., Yu Z., Ni W., Ho
C.-T., Ren H., Zhao J. “PRO-V: An Efficient
Program Generation Multi-Agent System for
Automatic RTL Verification.”
arXiv:2506.12200, 2025. ISBN: 978-954-
683-691-5.

[6] Lv J., Zuo S., Cheng X., Li Z., Zhang W.,
Zhang D., Qian Z. “VerilogEval: Evaluating
Large Language Models for Verilog Code
Generation.” Dataset. GitHub/Zenodo, 2023.
Available at:
https://github.com/NVlabs/VerilogEval.

[7] Harris S. L. “HDLBits: A Collection of
Verilog Practice Problems.” Dataset.
University of Toronto, 2016. Available at:
https://hdlbits.01xz.net.

[8] Qiu R., Zhang G. L., Drechsler R.,
Schlichtmann U., Li B. “AutoBench:
Automatic Testbench Generation and
Evaluation Using LLMs for HDL Design.”
arXiv preprint arXiv:2407.03891, 2024.
[Online]. Available:
https://doi.org/10.48550/arXiv.2407.03891.
ISBN: 978-954-683-691-5.

[9] Bhandari J., Knechtel J., Narayanaswamy R.,
Garg S., Karri R. “LLM-Aided Testbench
Generation and Bug Detection for Finite-

State Machines.” arXiv preprint
arXiv:2406.17132, 2024. [Online].
Available:

https://doi.org/10.48550/arXiv.2406.17132.
ISBN: 978-954-683-691-5.

[10] YelJ.,HuY., XuK., Pan D., Chen Q., Zhou
J.,Zhao S., Fang X., Wang X., Guan N., Jiang
Z. “From Concept to Practice: an Automated
LILM-aided UVM Machine for RTL
Verification.” arXiv preprint
arXiv:2504.19959, 2025 (preprint). [Online].
Available:
https://doi.org/10.48550/arXiv.2504.19959.

This is an open access article licensed under

Creative Commons Attribution 4.0 International
BY doi: www.doi.org/10.70456/........cccceveeeeeene..

https://creativecommons.org/licenses/by/4.0/?ref=chooser-v1
http://www.doi.org/10.70456/

