
INTERNATIONAL SCIENTIFIC

CONFERENCE

20-22 November 2025, GABROVO

“UNITECH – SELECTED PAPERS” vol. 2025

Published by Technical University of Gabrovo

ISSN 2603-378X

This is an open access article licensed under

Creative Commons Attribution 4.0 International

doi: www.doi.org/10.70456/..........................

A DYNAMIC MULTI-AGENT SYSTEM FOR COVERAGE-BASED

TESTBENCH SYNTHESIS IN SYSTEMVERILOG

Veljko Lončarević*, Mihailo Knežević, Olga Ristić, Vanja Luković, Sanja Antić

Faculty of Technical Sciences in Čačak, University of Kragujevac, Svetog Save 65,

Čačak, Serbia

*Corresponding author: veljko.loncarevic@ftn.edu.rs

Abstract

This work introduces a dynamic multi-agent framework for automated testbench generation in hardware

verification, leveraging large language models (LLMs), cocotb, and Verilator. The system decomposes verification

into specialized agent roles, including specification parsing, testbench synthesis, stimuli generation, coverage

monitoring, and iterative refinement. Unlike naïve prompting, the closed-loop architecture ensures executable and

reusable cocotb harnesses while systematically improving coverage. Experimental evaluation demonstrates

functional coverage of 93.7% (±2.1), a top-1 pass rate of 82.5%, and an average time-to-first-test of 1.4 hours,

outperforming baseline LLM-driven methods and approaching recent automated UVM-based frameworks. The

reduced refinement iterations further highlight the robustness and correctness of generated artifacts. While not

yet achieving coverage saturation in domain-specific tasks, the modular agent design enables extensibility to

larger RTL designs, heterogeneous simulators, and integration of advanced strategies such as reinforcement

learning. These results demonstrate that LLM-driven multi-agent workflows provide a scalable and efficient

methodology for reducing human effort in verification closure, establishing a promising direction for AI-assisted

hardware verification.

Keywords: hardware verification, large language models, cocotb, Verilator, multi-agent systems, functional

coverage.

INTRODUCTION

Hardware verification remains one of the

most resource-intensive and error-prone

stages in digital design, where creating

complete test harnesses, generating effective

stimuli, and closing coverage gaps require

significant manual effort and specialised

knowledge [1]. Recent advances in machine

learning and large language models (LLMs)

enable workflows in which modular AI

agents interpret specifications, generate

cocotb-based test harnesses and Python

stimuli, control simulator runs under

Verilator, and iteratively refine tests using

coverage feedback [2–5]. This paper

examines a closed-loop, multi-agent

architecture that employs LLMs to produce

cocotb drivers, monitors, and scoreboards,

coordinates execution through a ZeroMQ

message bus, and evaluates performance

using functional coverage, top-1 pass rate,

time-to-first-test, and average refinement

iterations. The central question addressed is

whether LLM-driven agents can

automatically generate practical, reusable

cocotb testbenches and achieve coverage

closure comparable to human-authored

harnesses while significantly reducing

development time. Experimental evaluation

and reproducible metadata quantify trade-

offs between automation, correctness, and

engineering effort.

Traditional verification practices often

rely on constrained-random testing and

manual UVM-based infrastructures that,

despite their power, impose considerable

setup complexity and engineering overhead.

These methods scale poorly for rapidly

https://creativecommons.org/licenses/by/4.0/?ref=chooser-v1
http://www.doi.org/10.70456/

“UNITECH – SELECTED PAPERS” vol. 2025

Published by Technical University of Gabrovo

ISSN 2603-378X

This is an open access article licensed under

Creative Commons Attribution 4.0 International

doi: www.doi.org/10.70456/..........................

evolving hardware or incomplete

specifications, and their dependence on

human expertise in stimulus design and

coverage analysis limits reproducibility and

increases the likelihood of verification gaps.

In contrast, LLM-driven agents can rapidly

generate and adapt verification artifacts,

reducing entry barriers and enhancing

automation in coverage closure. This

transition positions AI-assisted verification

as not only a productivity enhancer but also

a potential paradigm shift in digital design

workflows.

METHODOLOGY

The multi-agent system is organized as

cooperating agents that parse the DUT,

synthesize a cocotb-compatible testbench,

generate stimuli, run simulations under a

cocotb harness with Verilator, collect

coverage, and produce reports, as shown on

Fig. 1. Agents communicate via ZeroMQ

and persist artifacts in a shared knowledge

base indexed by DUT id and run id. The

canonical representation passed between

agents is a structured DUT JSON that

contains signal metadata, inferred

transactions, and mapped verification intents

when natural-language requirements are

provided. The Specification Parser Agent

accepts SystemVerilog or Verilog RTL and

optional textual requirements. Static RTL

analysis extracts module ports, widths,

directions, clocks, resets, and candidate

transaction boundaries. Lightweight NLP is

applied to map requirement phrases to

functional coverage points when text is

supplied. The canonical DUT JSON

produced by the parser contains signal

descriptors, timing hints, and protocol

fragments, and is saved to the shared

knowledge base for downstream use and

provenance.

The Testbench Generator Agent

consumes the DUT JSON and renders

cocotb-compatible artifacts using Jinja2

templates. The produced artifacts consist of

an optional SystemVerilog interface

wrapper, cocotb-based Python driver and

monitor coroutines, a Python scaffold for

inserting expected results into the

scoreboard, and essential assertions

expressed either as Python checks or as

simulator-supported constructs.

Fig. 1. Multi-Agent System Architecture

https://creativecommons.org/licenses/by/4.0/?ref=chooser-v1
http://www.doi.org/10.70456/

“UNITECH – SELECTED PAPERS” vol. 2025

Published by Technical University of Gabrovo

ISSN 2603-378X

This is an open access article licensed under

Creative Commons Attribution 4.0 International

doi: www.doi.org/10.70456/..........................

Two generation modes are supported by

template parameters: strict mode enforces

full project layout and explicit interface

bindings, while permissive mode produces

compact harness code for faster iteration.

Constrained-random and directed stimuli

are generated by the Stimulus Generator

Agent and realized as Python coroutines

within the cocotb stimulus library. Constraint

semantics are derived from the DUT JSON

and from optional user constraints. For

expected-value computation, Python reference

models are executed directly within the cocotb

harness; these models are used by the

scoreboard to compute expected outputs and

to validate transactions.

Monitoring and checking are performed

by the Monitor Agent and the Scoreboard

Agent implemented in Python under cocotb.

The Monitor Agent observes interface

signals via cocotb APIs, reconstructs

transactions, timestamps events, and

publishes transaction records to ZeroMQ.

The Scoreboard Agent consumes published

transactions and compares actual results

with expected values computed by the

Python reference model; mismatch records

are annotated with contextual metadata to

support automated repair.

Our evaluation focuses on four

complementary metrics that capture both

effectiveness and efficiency of the

verification flow, as shown in Table I.

Functional coverage (%) quantifies the

fraction of predefined bins exercised during

simulation and is reported as mean ±

standard deviation across repeated runs.

Top-1 pass rate (pass@1) measures the

proportion of generated testbenches that

meet correctness thresholds on the first

attempt, reported as a percentage. Time-to-

first-test records the human-hours required

from DUT specification input to a runnable

cocotb testbench, expressed in hours along

with the speedup factor relative to manual

authoring. Finally, refinement iterations

reflect the average number of generate–

simulate–refine loops needed to converge on

an acceptable testbench, again reported as

mean ± standard deviation.

Table I. Evaluation metrics and reporting targets

Metric Definition Format

Functional

coverage (%)

Fraction of

functional bins

exercised

Mean ± std across

N runs

Top-1 pass rate
(pass@1)

Proportion of
generated TBs

meeting threshold

on first try

Percentage

Time-to-first-test Human-hours

required from

DUT input to

runnable test

Hours and

speedup factor vs

manual

Functional

coverage (%)

Fraction of

functional bins

exercised

Mean ± std across

N runs

Simulation runs are driven by a simulator

adapter layer that standardizes invocation

and result extraction. For open workflows,

Verilator is used together with cocotb; the

adapter invokes Verilator, runs the cocotb

test scripts, and extracts simulator-

dependent logs, waveform files (VCD), and

coverage exports when available. The

Coverage Collector ingests these simulator

outputs and maps functional coverage bins

to DUT JSON requirements; coverage deltas

are computed and stored for follow-up.

The Regression Manager Agent

consumes uncovered bin lists and prioritizes

follow-up tests using configurable heuristics

such as seed diversification and targeted

sequence generation for uncovered bins.

Regression jobs are scheduled across

available compute resources and results are

aggregated into cumulative coverage

timelines in the knowledge base. The

Reporter Agent collects ZeroMQ streams

and stored artifacts to produce final reports

that include pass/fail summaries, coverage

matrices, waveform references, and per-

iteration failure traces.

Fig. 2 illustrates the compact

generate→simulate→analyze→decide loop

used to iteratively refine automatically

generated cocotb test harnesses. The initial

https://creativecommons.org/licenses/by/4.0/?ref=chooser-v1
http://www.doi.org/10.70456/

“UNITECH – SELECTED PAPERS” vol. 2025

Published by Technical University of Gabrovo

ISSN 2603-378X

This is an open access article licensed under

Creative Commons Attribution 4.0 International

doi: www.doi.org/10.70456/..........................

phase, referred to as the Generator, takes the
canonical DUT JSON as input and produces
all runnable artifacts required for a single
job, including Python cocotb modules,
optional lightweight SystemVerilog
interface wrappers, and a deterministic seed.
Those outputs are packaged as
testbench_artifacts together with the seed
and dispatched to the Simulator Adapter.
The Simulator Adapter prepares an isolated
workspace for each run, executes Verilator
alongside the cocotb test modules, and
generates a sim_results payload containing
the waveform file (wave.vcd), execution
logs, simulator exit status, and any raw
coverage exports (coverage.xml). The
Simulator Adapter publishes the sim_results
message on ZeroMQ and persists the run
manifest under the associated run_id.

Fig. 2. Generate, simulate, analyze, decide loop

The Analyzer step consumes the
simulator outputs and performs combined
runtime processing that in a full system is
implemented by the Monitor, Scoreboard,
and Coverage Collector. From sim_results
the Analyzer reconstructs transactions,
extracts assertion and scoreboard outcomes,
and computes functional coverage bins. The
Analyzer then emits coverage_metrics and
mismatch_info to the Regression Manager
and publishes transactions plus a concise
summary message on ZeroMQ for Reporter
and archival. All messages are tagged with
the run_id and seed to preserve provenance
and to allow correlation between
transactions, coverage, and the original DUT
JSON.

The Regression Manager receives

coverage and mismatch summaries and
applies policy to decide whether to stop or to
request further refinement. When additional
testing is required, directives (for example,
targeted_bins and a new_seed) are returned
to the Generator, which synthesizes updated
artifacts and restarts the loop.

Convergence and stopping criteria are
enforced by thresholds on functional
coverage, limits on refinement iterations, or
budgeted compute time. Average refinement
iterations, top-1 pass rate, time-to-first-test,
and functional coverage per run are recorded
as primary evaluation metrics to quantify the
behavior of this closed-loop process.

LLM interactions are encapsulated in
agents responsible for specification
interpretation and for code-templating
assistance, using ChatGPT 5 as the model of
choice. Prompts are constructed from the
DUT JSON and from curated cocotb
templates. Before promotion, the generated
code undergoes validation through a style
linter and a brief compile-time smoke test
performed with Verilator and cocotb.
Compilation or simulation failures trigger an
LLM-assisted repair routine that suggests
edits; suggested edits are validated through
the same quick-compile loop before
acceptance. Optionally, model preferences
may be refined offline via RL-style fine-
tuning using simulator pass/fail outcomes as
preference labels.

Benchmarks are run on a curated corpus
of small RTL designs and on the
VerilogEval/HDLBits-derived dataset for
comparability [6, 7]. Each experimental run
records DUT revision, template version,
LLM model and temperature, simulator
settings, random seeds, and the sequence of
artifacts to ensure reproducibility.

A conservative acceptance gate is applied
before generated files enter the regression
pool. Files must pass a style linter, a minimal
compilation smoke test with Verilator plus
cocotb, and an expected-value consistency
check against the Python reference model.
Only artifacts that pass these checks are
scheduled for full regression, which prevents
accumulation of failing scaffolding and
reduces wasted simulation cycles.

https://creativecommons.org/licenses/by/4.0/?ref=chooser-v1
http://www.doi.org/10.70456/

“UNITECH – SELECTED PAPERS” vol. 2025

Published by Technical University of Gabrovo

ISSN 2603-378X

This is an open access article licensed under

Creative Commons Attribution 4.0 International

doi: www.doi.org/10.70456/..........................

RESULTS AND DISCUSSION

The results in Table II indicate a
substantial improvement in testbench
generation performance when utilizing the
AI Agent compared to the Naïve LLM
approach. Functional coverage achieved by
the AI Agent reached 93.7% with low
variability (±2.1%), markedly higher than
the 61.4% (±7.8%) attained by the baseline.

Table III. Performance metrics

Metric AI Agent Naïve - LLM

Functional
coverage (%)

93.7 ± 2.1 61.4 ± 7.8

Top-1 pass rate
(pass@1)

82.5% 27.3%

Time-to-first-test 1.4 h 5.6 h

Refinement
iterations

2.3 ± 0.6 6.8 ± 1.9

Similarly, the Top-1 pass rate was
significantly improved, with the AI Agent
achieving 82.5% versus 27.3% for the Naïve
LLM, demonstrating a stronger ability to
produce correct testbenches on the first
attempt (Fig. 3). Efficiency metrics also
favored the AI Agent, with the time-to-first-
test reduced to 1.4 hours compared to 5.6
hours and the number of refinement
iterations required decreased to 2.3 (±0.6)
from 6.8 (±1.9). These findings collectively
indicate that the AI Agent approach
enhances both effectiveness and efficiency
in automated test generation, reducing the
number of iterations and total time required
while achieving higher coverage and success
rates.

Fig. 3. AI Agent vs. Naïve LLM approach
comparison

AutoBench reports a coverage-driven

pass@1 of ≈97.3% on combinational tasks

[8]. In comparison, our AI Agent pipeline

achieved a top-1 pass@1 of 82.5% with an

average of 2.3 refinement iterations to reach

the coverage threshold. While this is lower

than AutoBench’s near-perfect first-try

success rate, our method requires

substantially fewer refinement loops,

indicating that the generated testbenches are

already closer to executable form even on

the first attempt.

While Bhandari et al. report driving FSM

transition coverage to 100% with iterative

re-prompting [9] our approach reached a

mean functional coverage of 93.7% ± 2.1

after an average of 2–3 iterations. This falls

short of their perfect coverage but remains

significantly higher than the Naïve LLM

baseline (61.4% ± 7.8), demonstrating the

effectiveness of targeted agent-driven

refinement.

UVM₂ demonstrates ≈89.6% functional

coverage and reports up to ≈38.8×

productivity gains [10]. Our pipeline

outperformed UVM₂ on coverage (93.7% vs.

89.6%) and achieved a reduction in time-to-

first-test to 1.4 h, representing a ≈4× speedup

relative to manual development. Although

this speedup is lower than UVM₂’s

maximum, we emphasize that our stricter

cocotb-based environment requires

integrating coverage collection, scoreboard

checks, and waveform analysis in a single

flow, which inherently imposes higher setup

overhead than more template-relaxed

systems.

CONCLUSION

This work presented a dynamic multi-

agent system for automated, coverage-based

testbench synthesis in SystemVerilog using

cocotb, Verilator, and large language

models. The closed-loop architecture

comprises specialized agents for parsing

specifications, generating artifacts,

producing stimuli, monitoring execution,

collecting coverage, and refining tests,

achieving substantial gains over naïve LLM

https://creativecommons.org/licenses/by/4.0/?ref=chooser-v1
http://www.doi.org/10.70456/

“UNITECH – SELECTED PAPERS” vol. 2025

Published by Technical University of Gabrovo

ISSN 2603-378X

This is an open access article licensed under

Creative Commons Attribution 4.0 International

doi: www.doi.org/10.70456/..........................

prompting and previous automated

verification methods. Experimental results

show functional coverage of 93.7% (±2.1), a

top-1 pass rate of 82.5%, and an average

time-to-first-test of 1.4 hours, approaching

the performance of advanced UVM and

coverage-driven frameworks. The reduced

refinement iterations indicate that the system

can produce reusable cocotb harnesses with

minimal manual input. Although it does not

yet match domain-specific coverage results,

the framework offers an effective balance

between automation, accuracy, and

efficiency. Its modular design allows

extension to protocol inference, assertion

synthesis, and larger designs. Future work

will target scalability across simulation

backends and integration of reinforcement

learning for optimized test generation,

advancing AI-assisted verification toward

practical, real-world deployment.

Acknowledgments: This study was supported

by the Ministry of Science, Technological

Development and Innovation of the Republic

of Serbia, and these results are parts of

Grant No. 451-03-136/2025-03/200132 with

the University of Kragujevac – Faculty of

Technical Sciences Čačak.

REFERENCE
[1] Zhang Z., Szekely B., Gimenes P., Chadwick

G., McNally H., Cheng J., Mullins R., Zhao

Y. “LLM4DV: Using Large Language

Models for Hardware Test Stimuli

Generation.” 2025 IEEE 33rd Annual

International Symposium on Field-

Programmable Custom Computing Machines

(FCCM), 2025, pp. 133-137.

[2] Zhou J., Ji Y., Wang N., Hu Y., Jiao X., Yao

B., Fang X., Zhao S., Guan N., Jiang Z.

“Insights from Rights and Wrongs: A Large

Language Model for Solving Assertion

Failures in RTL Design.” arXiv preprint

arXiv:2503.04057, 2025. ISBN: 978-954-

683-691-5.

[3] Fang W., Li M., Li M., Yan Z., Liu S., Zhang

H., Xie Z. “AssertLLM: Generating and

Evaluating Hardware Verification Assertions

from Design Specifications via Multi-LLMs.”

arXiv preprint arXiv:2402.00386, 2024.

ISBN: 978-954-683-691-5.

[4] Ma R., Yang Y., Liu Z., Zhang J., Li M.,

Huang J., Luo G. “VerilogReader: LLM-

Aided Hardware Test Generation.” IEEE

LLM-Aided Design Workshop (LAD), 2024.

ISBN: 978-954-683-691-5.

[5] Zhao Y., Wu Z., Zhang H., Yu Z., Ni W., Ho

C.-T., Ren H., Zhao J. “PRO-V: An Efficient

Program Generation Multi-Agent System for

Automatic RTL Verification.”

arXiv:2506.12200, 2025. ISBN: 978-954-

683-691-5.

[6] Lv J., Zuo S., Cheng X., Li Z., Zhang W.,

Zhang D., Qian Z. “VerilogEval: Evaluating

Large Language Models for Verilog Code

Generation.” Dataset. GitHub/Zenodo, 2023.

Available at:

https://github.com/NVlabs/VerilogEval.

[7] Harris S. L. “HDLBits: A Collection of

Verilog Practice Problems.” Dataset.

University of Toronto, 2016. Available at:

https://hdlbits.01xz.net.

[8] Qiu R., Zhang G. L., Drechsler R.,

Schlichtmann U., Li B. “AutoBench:

Automatic Testbench Generation and

Evaluation Using LLMs for HDL Design.”

arXiv preprint arXiv:2407.03891, 2024.

[Online]. Available:

https://doi.org/10.48550/arXiv.2407.03891.

ISBN: 978-954-683-691-5.

[9] Bhandari J., Knechtel J., Narayanaswamy R.,

Garg S., Karri R. “LLM-Aided Testbench

Generation and Bug Detection for Finite-

State Machines.” arXiv preprint

arXiv:2406.17132, 2024. [Online].

Available:

https://doi.org/10.48550/arXiv.2406.17132.

ISBN: 978-954-683-691-5.

[10] Ye J., Hu Y., Xu K., Pan D., Chen Q., Zhou

J., Zhao S., Fang X., Wang X., Guan N., Jiang

Z. “From Concept to Practice: an Automated

LLM-aided UVM Machine for RTL

Verification.” arXiv preprint

arXiv:2504.19959, 2025 (preprint). [Online].

Available:

https://doi.org/10.48550/arXiv.2504.19959.

https://creativecommons.org/licenses/by/4.0/?ref=chooser-v1
http://www.doi.org/10.70456/

