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Abstract

Accurate segmentation of medical images is essential for diagnosis and treatment planning. Traditional manual
methods in platforms such as 3D Slicer are precise but time-consuming and dependent on the operator’s expertise.
With the development of deep learning, neural networks (particularly U-Net) have enabled automatic
segmentation with improved efficiency and precision. This paper compares manual and automatic segmentation
on MRI spleen scans. Manual methods included thresholding, painting, and tracing techniques, while automatic
segmentation was performed using the MONAI Label framework integrated with U-Net. Evaluation with the Dice
coefficient showed high overlap between methods, with values above 0.9 in most cases. Results confirm that deep
learning - based segmentation provides faster and reliable outcomes, supporting its application in clinical
practice.
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INTRODUCTION

Medical image segmentation is a
fundamental step in modern diagnostic and
therapeutic procedures, as it enables the
isolation of relevant anatomical structures
and pathological regions. Conventional
approaches, including thresholding and
manual contour tracing, require significant
human involvement and expertise, which
makes them both time-consuming and prone
to inter-operator variability [1].
Recent advances in machine learning and
deep learning have enabled automated
methods that can improve accuracy and
reproducibility. Among these, convolutional
neural networks (CNNs), and in particular
the U-Net architecture, have achieved state-
of-the-art performance in biomedical image
segmentation. [3,6]. In this context, the
MONAI Label framework, designed for
clinical and research applications, offers a
practical solution for interactive and
automated annotation directly within
platforms such as 3D Slicer [2].
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The main objective of this paper is to
compare manual segmentation of medical
scans with automated methods based on
neural networks, in order to evaluate their
performance and applicability in medical
practice. The dataset used in this study
consisted of seven anonymized abdominal
MRI scans obtained from the Embodi3D
public repository, which provides de-
identified medical imaging data for research
and educational purposes. Voxel spacing
varied between cases but was resampled to
an isotropic resolution prior to segmentation.
All data were preprocessed in 3D Slicer to
ensure consistent orientation and image
quality before further analysis.

EXPOSITION
OVERVIEW

This section describes the experimental
workflow implemented to compare manual
and automated segmentation of abdominal
MRI (spleen) volumes [1,8,9]. The aim was
to produce precise, volumetric ground-truth
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masks by applying standard manual and
semi-automatic tools in 3D Slicer, and then
to evaluate the performance of an automated
pipeline based on MONAI Label with a U-
Net segmentation model[2,3,5]. Quantitative
comparison was performed using the Dice
similarity coefficient, supported by visual
inspection of 2D overlays and 3D
renderings.

EXPERIMENTAL WORKFLOW
(SUMMARY)

The experiment followed three main
stages: (1) preparation and visual inspection
of source volumes; (2) generation of
reference masks via manual and semi-
automatic segmentation tools in 3D Slicer
[1,8,9]; (3) automated inference with
MONALI Label and quantitative/qualitative
evaluation of the resulting masks against the
manual references using Dice. All masks and
original volumes were archived to enable re-
use for additional training or retrospective
analysis.

MANUAL SEGMENTATION -
GENERAL PROCEDURE

Manual segmentation aimed to create
high-quality reference masks while keeping
the process practical for a clinical/research
setting. For each volume the general
approach was:

e perform an initial visual assessment
of the volume (choose imaging
plane(s) and representative slices for
inspection),

e generate a coarse mask using
intensity-based methods
(thresholding) or contouring tools to
limit the working region,

e refine boundaries on representative
slices using painting and contour
tools (e.g., level tracing), and

e interpolate across slices with the
“Fill Between Slices” functionality
to build a continuous 3D segment.

Where appropriate, semi-automatic
algorithms (for example, region-growing /
Fast Marching) were used to accelerate
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segmentation by expanding from user-
placed seed points; however, these outputs
were always reviewed and corrected
manually when needed [9]. Intentionally, no
global smoothing or aggressive post-
interpolation smoothing was applied so that
the resulting volumes retained the original
image texture and anatomical detail - a
decision that facilitates direct, voxel-wise
comparison  with  automated  masks.
Finalized masks were saved alongside the
original volumes in standard volumetric
formats to preserve provenance.

AUTOMATED SEGMENTATION
WITH MONAI LABEL - GENERAL
WORKFLOW

Automated processing employed
MONALI Label as a server-based inference
and annotation framework integrated with
3D Slicer as the client. In practice this
workflow consisted of starting a MONALI
Label service (server) hosting a pre-trained
U-Net model for spleen segmentation,
connecting 3D Slicer to that service via the
MONAI Label extension, and submitting
anonymized volumetric data for inference.
The service responded with segmentation
masks that were imported automatically into
the Slicer Segment Editor for visualization.
Crucially, the interaction model used in the
study combined fully automated inference
with optional interactive correction: the user
could accept the returned mask as-is,
perform minor manual edits (Paint / Erase)
inside Slicer, and then submit corrected
labels back to the server to enrich the dataset
for subsequent training cycles (active-
learning  loop). [10] All  produced
segmentation masks were stored as separate
files, leaving the original volumes
unmodified. This architecture enabled rapid
mask generation while preserving the
possibility of iterative improvement.

MODEL ARCHITECTURE (U-NET)
The automated pipeline relied on a U-Net

family architecture, chosen for its proven

balance  between contextual feature
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extraction and spatial localization [2]. The
U-Net encoder-decoder design with skip
connections  preserves  fine  spatial
information while aggregating high-level
context, which is particularly beneficial for
organ segmentation where boundaries can be
subtle. [7]. For volumetric data, a 3D variant
of U-Net (using 3D convolutions and
up/down-sampling) allows the model to
exploit inter-slice continuity directly,
improving consistency in the axial direction
and reducing slice-wise artifacts. MONAI
provides ready configurations and pre-
trained variants of these networks,
facilitating deployment within the Label
framework. The MONALI Label framework
employed a pre-trained 3D U-Net model
optimized for spleen segmentation. The
model was trained by the MONAI
development  team  using  standard
configurations (Dice loss, Adam optimizer)
as described in the MONAI documentation,
and was used here only for inference.

EVALUATION METHODOLOGY
AND ANALYSIS

Segmentation agreement was quantified
using the Dice similarity coefficient (DSC),
defined as

2|ANB|
DICE(A,B) =

|A] + |B|

Where A and B are voxel sets from manual
and automated masks respectively. In
addition to a global Dice score per volume,
visual overlays of manual (ground truth) and
predicted masks were inspected on
representative slices and in 3D to identify
common failure modes (e.g., under-
segmentation at low-contrast boundaries,
small false positives). A reproducible
evaluation script based on SimplelTK /
NumPy was used to compute metrics across
the dataset. Although Dice score is used as
main metric, Hausdorff Distance and Jacard
score were used for back proofing of results.
The observed Dice scores ranged across the
cases in the study; most volumes showed
high overlap (Dice = 0.9), indicating strong
agreement between MONALI Label’s U-Net
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predictions and manual segmentation [7]. A
minority of cases exhibited substantially
lower Dice values, which were associated
with reduced soft-tissue contrast, atypical
organ morphology, or imaging artifacts;
these cases highlight where model
generalization is limited and where targeted
additional annotation or model fine-tuning is
beneficial. Incorporating active learning,
where corrected segmentations are used to
iteratively retrain the model, could enhance
its adaptability to diverse anatomical
variations

POST-PROCESSING, QUALITY
CONTROL AND REPRODUCIBILITY
NOTES

To improve final mask quality for
downstream use, standard post-processing
steps are recommended: connected-
component analysis to remove small
spurious clusters, morphological operations
to close small holes or remove speckle, and
volume-based  filtering to  enforce
physiologically plausible size ranges.
Parameter choices (e.g., threshold values or
Fast Marching limits) materially affect
outcomes and should be documented;
datasets and masks must be stored with clear
filenames and versioning to guarantee
reproducibility. When integrating into
clinical pipelines, MONAI Label’s support
for DICOM-based protocols and PACS
integration can be leveraged, but privacy-
preserving data handling (anonymization
and minimal metadata transfer) must be
enforced.

DISCUSSION — PRACTICAL
IMPLICATIONS AND LIMITATIONS
The combined manual/automatic
workflow demonstrated that modern deep-
learning tools can substantially reduce
annotation time while producing clinically
acceptable segmentations for many routine
cases. Nevertheless, automated methods are
not uniformly robust: cases with low
contrast, unusual anatomy or imaging
artifacts require human oversight and,
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ideally, targeted retraining via submitted
corrected labels [10]. In practice, manual
segmentation of each case required between
20 and 30 minutes depending on image
quality and organ delineation complexity. In
contrast, automated segmentation using
MONALI Label produced results within 15—
30 seconds per case. This substantial
reduction in processing time demonstrates a
clear practical advantage of the automated
approach, particularly for large-scale or
time-sensitive clinical applications.

For future work, expanding the training
corpus, applying stronger data
augmentation, and incorporating active-
learning strategies are recommended steps to
improve generalization and reduce failure
cases.

To quantitatively evaluate the agreement
between manual and automated
segmentation, the Dice similarity coefficient
was calculated for all cases. The results are
summarized in Table 1, where higher values
indicate a better overlap between reference
(manual) and predicted (automatic) masks.

Tab. 1. Dice similarity coefficients between
manual and automated spleen segmentation

Case Dice Manual segmentation
coefficient method
Threshold + Paint +

Spleenl 0.9423

Spleen2 0.9165
Spleen3 0.9216
Spleen4 0.8845

Fill Between Slices
Level Tracing
Level Tracing
Level Tracing

Spleen5 0.5213 Fast Marching
Threshold + Paint +

Spleent 0.9052 Fill Between Slices
Threshold + Paint +

Spleen7 0.9153

Fill Between Slices

As shown in Table 1, the majority of cases
achieved Dice coefficients above 0.9, which
indicates a high degree of agreement
between manual and automated
segmentation. The only exception is case
spleen5, where the Fast Marching method
resulted in a less accurate ground-truth
mask, leading to a significantly lower Dice
score (0.52). This highlights how certain
manual techniques and image characteristics
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may influence the comparability with
automated results.

Fig. 1. 3D model of the spleen obtained by
manual segmentation in 3D Slicer.

o

Fig. 2. 3D model of the spleen obtained by

automated segmentation using the MONAI
Label framework

In addition to the numerical results, visual
representations of the obtained
segmentations are provided for better
illustration.

Figure 1 shows the 3D model of the spleen
generated through manual segmentation in
3D Slicer. The contours were defined slice
by slice using thresholding, painting, and
tracing tools, and the final volumetric
reconstruction was created by interpolating
between the segmented slices. Figure 2
presents the spleen segmentation obtained
by applying the automated MONAI Label
workflow with a U-Net model. Unlike the
manual process, this approach produced the
3D model in a fully automated manner,
significantly reducing the time required for
segmentation.
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The visual comparison of the two figures
highlights the high degree of similarity
between the manually and automatically
generated  models, confirming  the
quantitative Dice scores reported in Table 1.

CONCLUSION

This study demonstrated that neural
networks, implemented through the MONALI
Label framework, represent an effective and
practical solution for medical image
segmentation. Compared to traditional
manual methods, automatic segmentation
achieved comparable or superior results in
significantly less time, thus reducing the
burden on clinical experts.
The findings confirm the potential of deep
learning models, particularly U-Net, in
improving the efficiency and reproducibility
of medical image analysis [2,7]. Future
research should focus on testing larger
datasets, evaluating performance across
different imaging modalities, and integrating
advanced models to further enhance clinical
applicability [4]. Before clinical
deployment, rigorous multi-center
validation and data anonymization protocols
are necessary to ensure robustness,
reproducibility, and patient privacy.
Integrating such systems into hospital PACS
environments could further accelerate
radiological workflows.
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