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Abstract 

Accurate segmentation of medical images is essential for diagnosis and treatment planning. Traditional manual 

methods in platforms such as 3D Slicer are precise but time-consuming and dependent on the operator’s expertise. 

With the development of deep learning, neural networks (particularly U-Net) have enabled automatic 

segmentation with improved efficiency and precision. This paper compares manual and automatic segmentation 

on MRI spleen scans. Manual methods included thresholding, painting, and tracing techniques, while automatic 

segmentation was performed using the MONAI Label framework integrated with U-Net. Evaluation with the Dice 

coefficient showed high overlap between methods, with values above 0.9 in most cases. Results confirm that deep 

learning - based segmentation provides faster and reliable outcomes, supporting its application in clinical 

practice. 
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INTRODUCTION 

Medical image segmentation is a 

fundamental step in modern diagnostic and 

therapeutic procedures, as it enables the 

isolation of relevant anatomical structures 

and pathological regions. Conventional 

approaches, including thresholding and 

manual contour tracing, require significant 

human involvement and expertise, which 

makes them both time-consuming and prone 

to inter-operator variability [1]. 

Recent advances in machine learning and 

deep learning have enabled automated 

methods that can improve accuracy and 

reproducibility. Among these, convolutional 

neural networks (CNNs), and in particular 

the U-Net architecture, have achieved state-

of-the-art performance in biomedical image 

segmentation. [3,6]. In this context, the 

MONAI Label framework, designed for 

clinical and research applications, offers a 

practical solution for interactive and 

automated annotation directly within 

platforms such as 3D Slicer [2]. 

The main objective of this paper is to 

compare manual segmentation of medical 

scans with automated methods based on 

neural networks, in order to evaluate their 

performance and applicability in medical 

practice. The dataset used in this study 

consisted of seven anonymized abdominal 

MRI scans obtained from the Embodi3D 

public repository, which provides de-

identified medical imaging data for research 

and educational purposes. Voxel spacing 

varied between cases but was resampled to 

an isotropic resolution prior to segmentation. 

All data were preprocessed in 3D Slicer to 

ensure consistent orientation and image 

quality before further analysis. 

EXPOSITION 
OVERVIEW 

This section describes the experimental 

workflow implemented to compare manual 

and automated segmentation of abdominal 

MRI (spleen) volumes [1,8,9]. The aim was 

to produce precise, volumetric ground-truth 
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masks by applying standard manual and 

semi-automatic tools in 3D Slicer, and then 

to evaluate the performance of an automated 

pipeline based on MONAI Label with a U-

Net segmentation model[2,3,5]. Quantitative 

comparison was performed using the Dice 

similarity coefficient, supported by visual 

inspection of 2D overlays and 3D 

renderings. 

EXPERIMENTAL WORKFLOW 

(SUMMARY) 

The experiment followed three main 

stages: (1) preparation and visual inspection 

of source volumes; (2) generation of 

reference masks via manual and semi-

automatic segmentation tools in 3D Slicer 

[1,8,9]; (3) automated inference with 

MONAI Label and quantitative/qualitative 

evaluation of the resulting masks against the 

manual references using Dice. All masks and 

original volumes were archived to enable re-

use for additional training or retrospective 

analysis. 

MANUAL SEGMENTATION - 

GENERAL PROCEDURE 

Manual segmentation aimed to create 

high-quality reference masks while keeping 

the process practical for a clinical/research 

setting. For each volume the general 

approach was: 

• perform an initial visual assessment

of the volume (choose imaging

plane(s) and representative slices for

inspection),

• generate a coarse mask using

intensity-based methods

(thresholding) or contouring tools to

limit the working region,

• refine boundaries on representative

slices using painting and contour

tools (e.g., level tracing), and

• interpolate across slices with the

“Fill Between Slices” functionality

to build a continuous 3D segment.

Where appropriate, semi-automatic 

algorithms (for example, region-growing / 

Fast Marching) were used to accelerate 

segmentation by expanding from user-

placed seed points; however, these outputs 

were always reviewed and corrected 

manually when needed [9]. Intentionally, no 

global smoothing or aggressive post-

interpolation smoothing was applied so that 

the resulting volumes retained the original 

image texture and anatomical detail - a 

decision that facilitates direct, voxel-wise 

comparison with automated masks. 

Finalized masks were saved alongside the 

original volumes in standard volumetric 

formats to preserve provenance. 

AUTOMATED SEGMENTATION 

WITH MONAI LABEL - GENERAL 

WORKFLOW 

Automated processing employed 

MONAI Label as a server-based inference 

and annotation framework integrated with 

3D Slicer as the client. In practice this 

workflow consisted of starting a MONAI 

Label service (server) hosting a pre-trained 

U-Net model for spleen segmentation, 

connecting 3D Slicer to that service via the 

MONAI Label extension, and submitting 

anonymized volumetric data for inference. 

The service responded with segmentation 

masks that were imported automatically into 

the Slicer Segment Editor for visualization. 

Crucially, the interaction model used in the 

study combined fully automated inference 

with optional interactive correction: the user 

could accept the returned mask as-is, 

perform minor manual edits (Paint / Erase) 

inside Slicer, and then submit corrected 

labels back to the server to enrich the dataset 

for subsequent training cycles (active-

learning loop). [10] All produced 

segmentation masks were stored as separate 

files, leaving the original volumes 

unmodified. This architecture enabled rapid 

mask generation while preserving the 

possibility of iterative improvement. 

MODEL ARCHITECTURE (U-NET) 

The automated pipeline relied on a U-Net 

family architecture, chosen for its proven 

balance between contextual feature 
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extraction and spatial localization [2]. The 

U-Net encoder-decoder design with skip 

connections preserves fine spatial 

information while aggregating high-level 

context, which is particularly beneficial for 

organ segmentation where boundaries can be 

subtle. [7]. For volumetric data, a 3D variant 

of U-Net (using 3D convolutions and 

up/down-sampling) allows the model to 

exploit inter-slice continuity directly, 

improving consistency in the axial direction 

and reducing slice-wise artifacts. MONAI 

provides ready configurations and pre-

trained variants of these networks, 

facilitating deployment within the Label 

framework. The MONAI Label framework 

employed a pre-trained 3D U-Net model 

optimized for spleen segmentation. The 

model was trained by the MONAI 

development team using standard 

configurations (Dice loss, Adam optimizer) 

as described in the MONAI documentation, 

and was used here only for inference. 

EVALUATION METHODOLOGY 

AND ANALYSIS 

Segmentation agreement was quantified 

using the Dice similarity coefficient (DSC), 

defined as  

𝐷𝐼𝐶𝐸(𝐴, 𝐵) =  
2|𝐴⋂𝐵|

|𝐴| + |𝐵|
Where A and B are voxel sets from manual 

and automated masks respectively. In 

addition to a global Dice score per volume, 

visual overlays of manual (ground truth) and 

predicted masks were inspected on 

representative slices and in 3D to identify 

common failure modes (e.g., under-

segmentation at low-contrast boundaries, 

small false positives). A reproducible 

evaluation script based on SimpleITK / 

NumPy was used to compute metrics across 

the dataset. Although Dice score is used as 

main metric, Hausdorff Distance and Jacard 

score were used for back proofing of results. 

The observed Dice scores ranged across the 

cases in the study; most volumes showed 

high overlap (Dice ≳ 0.9), indicating strong 

agreement between MONAI Label’s U-Net 

predictions and manual segmentation [7]. A 

minority of cases exhibited substantially 

lower Dice values, which were associated 

with reduced soft-tissue contrast, atypical 

organ morphology, or imaging artifacts; 

these cases highlight where model 

generalization is limited and where targeted 

additional annotation or model fine-tuning is 

beneficial. Incorporating active learning, 

where corrected segmentations are used to 

iteratively retrain the model, could enhance 

its adaptability to diverse anatomical 

variations 

POST-PROCESSING, QUALITY 

CONTROL AND REPRODUCIBILITY 

NOTES 

To improve final mask quality for 

downstream use, standard post-processing 

steps are recommended: connected-

component analysis to remove small 

spurious clusters, morphological operations 

to close small holes or remove speckle, and 

volume-based filtering to enforce 

physiologically plausible size ranges. 

Parameter choices (e.g., threshold values or 

Fast Marching limits) materially affect 

outcomes and should be documented; 

datasets and masks must be stored with clear 

filenames and versioning to guarantee 

reproducibility. When integrating into 

clinical pipelines, MONAI Label’s support 

for DICOM-based protocols and PACS 

integration can be leveraged, but privacy-

preserving data handling (anonymization 

and minimal metadata transfer) must be 

enforced. 

DISCUSSION — PRACTICAL 

IMPLICATIONS AND LIMITATIONS 

The combined manual/automatic 

workflow demonstrated that modern deep-

learning tools can substantially reduce 

annotation time while producing clinically 

acceptable segmentations for many routine 

cases. Nevertheless, automated methods are 

not uniformly robust: cases with low 

contrast, unusual anatomy or imaging 

artifacts require human oversight and, 
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ideally, targeted retraining via submitted 

corrected labels [10]. In practice, manual 

segmentation of each case required between 

20 and 30 minutes depending on image 

quality and organ delineation complexity. In 

contrast, automated segmentation using 

MONAI Label produced results within 15–

30 seconds per case. This substantial 

reduction in processing time demonstrates a 

clear practical advantage of the automated 

approach, particularly for large-scale or 

time-sensitive clinical applications. 

For future work, expanding the training 

corpus, applying stronger data 

augmentation, and incorporating active-

learning strategies are recommended steps to 

improve generalization and reduce failure 

cases. 

To quantitatively evaluate the agreement 

between manual and automated 

segmentation, the Dice similarity coefficient 

was calculated for all cases. The results are 

summarized in Table 1, where higher values 

indicate a better overlap between reference 

(manual) and predicted (automatic) masks. 

Tab. 1. Dice similarity coefficients between 

manual and automated spleen segmentation 

Case 
Dice 

coefficient 
Manual segmentation 

method 

Spleen1 0.9423 
Threshold + Paint + 

Fill Between Slices 

Spleen2 0.9165 Level Tracing 

Spleen3 0.9216 Level Tracing 

Spleen4 0.8845 Level Tracing 

Spleen5 0.5213 Fast Marching 

Spleen6 0.9052 
Threshold + Paint + 

Fill Between Slices 

Spleen7 0.9153 
Threshold + Paint + 

Fill Between Slices 

As shown in Table 1, the majority of cases 

achieved Dice coefficients above 0.9, which 

indicates a high degree of agreement 

between manual and automated 

segmentation. The only exception is case 

spleen5, where the Fast Marching method 

resulted in a less accurate ground-truth 

mask, leading to a significantly lower Dice 

score (0.52). This highlights how certain 

manual techniques and image characteristics 

may influence the comparability with 

automated results.  

Fig. 1. 3D model of the spleen obtained by 

manual segmentation in 3D Slicer. 

Fig. 2. 3D model of the spleen obtained by 

automated segmentation using the MONAI 

Label framework 

In addition to the numerical results, visual 

representations of the obtained 

segmentations are provided for better 

illustration.  

Figure 1 shows the 3D model of the spleen 

generated through manual segmentation in 

3D Slicer. The contours were defined slice 

by slice using thresholding, painting, and 

tracing tools, and the final volumetric 

reconstruction was created by interpolating 

between the segmented slices. Figure 2 

presents the spleen segmentation obtained 

by applying the automated MONAI Label 

workflow with a U-Net model. Unlike the 

manual process, this approach produced the 

3D model in a fully automated manner, 

significantly reducing the time required for 

segmentation. 
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The visual comparison of the two figures 

highlights the high degree of similarity 

between the manually and automatically 

generated models, confirming the 

quantitative Dice scores reported in Table 1. 

CONCLUSION 

This study demonstrated that neural 

networks, implemented through the MONAI 

Label framework, represent an effective and 

practical solution for medical image 

segmentation. Compared to traditional 

manual methods, automatic segmentation 

achieved comparable or superior results in 

significantly less time, thus reducing the 

burden on clinical experts. 

The findings confirm the potential of deep 

learning models, particularly U-Net, in 

improving the efficiency and reproducibility 

of medical image analysis [2,7]. Future 

research should focus on testing larger 

datasets, evaluating performance across 

different imaging modalities, and integrating 

advanced models to further enhance clinical 

applicability [4]. Before clinical 

deployment, rigorous multi-center 

validation and data anonymization protocols 

are necessary to ensure robustness, 

reproducibility, and patient privacy. 

Integrating such systems into hospital PACS 

environments could further accelerate 

radiological workflows. 
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