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Abstract 

Phishing attacks continue to pose a significant threat to digital security, necessitating the development of more 

effective detection mechanisms. This study explores the optimization of widely used machine learning classifier, 

Support Vector Machines (SVM), for the task of phishing website detection, leveraging the computational 

capabilities of Serbia’s National AI Platform. The research focuses on hyperparameter tuning using optimization 

techniques executed in high-performance DGX-A100 nodes. By utilizing the FastML Engine within the Codex AI 

SUITE, the study achieves scalable orchestration of large-scale experiments, enabling rapid evaluation of 

numerous hyperparameter configurations. Results demonstrate substantial improvements in training time, 

highlighting the potential of HPC resources to enhance cybersecurity applications and support the strategic 

utilization of national AI infrastructure. 
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INTRODUCTION 

In today’s digital environment, phishing 

attacks represent one of the most widespread 

and dangerous forms of cyber threats. The 

goal of these attacks is to deceive users into 

revealing confidential information, most 

often through fake websites that mimic 

legitimate services. Given the increasing 

sophistication of such attacks, traditional 

detection methods are becoming 

insufficient, which opens the door for the 

application of advanced machine learning 

techniques. The most common anti-phishing 

technique, blacklisting, is not enough to 

protect users from phishing because new 

phishing sites appear every day in thousands.  

Machine learning classifiers, such as 

Support Vector Machines (SVM), have 

proven to be effective tools in the automatic 

detection of phishing websites. However, 

their performance largely depends on the 

proper selection of hyperparameters, which 

directly influence the model’s effectiveness. 

The process of hyperparameter optimization 

can be extremely demanding, especially 

when dealing with complex models and 

large datasets.  

In this context, leveraging the resources 

of Serbia’s National AI Platform, including 

a supercomputer with high-capacity parallel 

processing capabilities, offers a unique 

opportunity to accelerate and enhance the 

optimization process. This infrastructure 

enables the evaluation of a large number of  

hyperparameter combinations within a 

significantly shorter time frame, thereby 

creating space for application of advanced 

algorithms such Bayesian optimization and 

genetic algorithms.  

   The aim of this study is to investigate the 

impact of various hyperparameter 

optimization methods on the performance of 
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classifier in the task of phishing website 

detection. Special emphasis will be placed 

on the efficiency, scalability, and accuracy 

of the models in the context of using HPC 

resources. The results of this research may 

contribute to the development of more 

robust and faster cybersecurity systems, as 

well as to the improved utilization of 

domestic AI infrastructure.   

To promote the development and 

application of artificial intelligence 

technologies in public web services as AI-

based phishing websites or similarity 

cybersecurity AI-driven products, across the 

entire industrial sector of the Republic of 

Serbia, and to provide strategic support to 

startup companies in building innovative AI-

driven products, the Government of the 

Republic of Serbia has established the 

National Platform for Artificial Intelligence 

(AI Platform) [1].  

The establishment and development of 

this platform is guided by the goals and 

measures outlined in the Serbia’s Artificial 

Intelligence Development Strategy for the 

periods 2020-2025 and 2025-2030.  

The AI Platform is deployed as a high-

performance supercomputing infrastructure 

located within The State Data Center in 

Kragujevac, which adheres to the highest 

reliability standards. 

 

ARCHITECTURE OF THE NATIONAL 

AI PLATFORM  

The system of the National AI Platform is 

built by integrating the computational power 

of four DGX-A100 servers, equipped with a 

total of 32 NVIDIA A100 GPUs, optimized 

for deep learning (DL) and multi-node HPC 

simulations. The DGX-A100 servers are 

fully dedicated to AI workloads, as the 

solution includes separate nodes for system 

administration and user access [2].   

All servers are interconnected via two 

Mellanox InfiniBand HDR networks, 

providing high bandwidth and access to a 

centralized, optimized AI data management 

system. NVIDIA DGX A100 is a universal 

platform for the entire AI infrastructure, 

from analytics and training to inference. It 

sets a new standard in computational 

density, delivering 5 petaFLOPS of 

AI performance in 6U unit, replacing 

fragmented infrastructure silos with a 

unified platform for any AI computing task.  

NVIDIA DGX A100 is the world’s first 

AI system built on NVIDIA A100 Tensor 

Core GPU architecture. By integrating eight 

A100 GPUs, the system delivers unmatched 

acceleration and is fully optimized for 

NVIDIA CUDA-Xtm software and the 

NVIDIA data center stack [2].  

Key innovations include [2]:  

• TF32 precision, which operates like 

FP32 but delivers up to 20x more AI 

FLOPS compared to the previous 

generation, without requiring code 

changes. 

• Automatic mixed precision with 

FP16, offering an additional 2x 

performance boost with just one 

extra line of code.  

• Memory bandwidth of 1.6 TB/s, a 

70% increase over the previous 

generation.  

• On-chip memory enhancements, 

including 40 MB of L2 cache, nearly 

7x larger, maximized computational 

throughput.  

This unprecedented power enables the 

fastest time-to-solution for training, 

inference, and analytics, empowering users 

to tackle challenges that were previously 

impractical or impossible to solve.  

 

Codex AI Suite - FastML 

To support large-scale machine learning 

workflows, this research utilizes the Codex 

AI SUITE – FastML Engine (Atos) [3], an 

advanced Data Science and Artificial 

Intelligence platform designed for high-

performance AI computing environments. 

Its primary goal is to simplify access to 

machine learning environments, streamline 

model development, and enable deployment 

across clusters of AI compute nodes, 

particularly within infrastructures such as 

DGX POD and SUPERPOD. 

 FastML Engine abstracts the technical 

complexity of supercomputing, allowing 
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ML developers to manage the entire 

production workflow via command-line 

interface or web browser.  

 
Fig.1. Block diagram of the machine learning 

workflow in HPC environment 

 

The platform is fully integrated with the 

NVIDIA DGX software stack and supports 

NVIDIA GPU Cloud (NGC) images and 

artifacts, including optimized ML 

frameworks and libraries packaged in 

Docker containers. 

FastML Engine also utilizes a hybrid 

orchestration layer capable of interacting 

with job schedulers and deploying 

interactive sessions on dedicated service 

nodes, enabling parallel execution of 

workloads alongside code development.  

The graphical interface further enhances 

usability by allowing researchers to launch 

JupyterLab notebook environments 

preloaded with selected ML frameworks. 

Users can mount datasets directly into their 

notebook instances and access their home 

directories, with deployment options 

available for both service and compute 

nodes. A dedicated GUI page facilitates 

comprehensive management of JupyterLab 

sessions. 

This infrastructure provides the 

computational foundation for executing 

large-scale hyperparameter optimization 

experiments and model training tasks, 

contributing to the overall efficiency and 

reproducibility of the research. 

 

MODEL DEVELOPMENT 

CLASSIFFICATION ALGORITHMS 

FOR PHISHING DETECTION 

For model development, the PhiUSIIL 

Phishing URL dataset [4] was used, obtained 

from the UC Irvine Machine Learning 

Repository. This dataset was created by 

Arvind Prasad and Shalini Chandra from 

Babashaheb Bhimrao Ambedkar University 

in 2024, with the aim of supporting the 

creation of efficient and effective 

frameworks for phishing detection. The 

original corpus includes 134,850 legitimate 

and 100,945 phishing URLs (a total of 

235,795 instances), with no missing values, 

extracted from the source code of web pages 

and URLs. Label 1 corresponds to legitimate 

URL, while label 0 indicates a phishing 

URL.  

The dataset contains a total of 54 features 

(variables), of which 3 are textual, 31 are 

numerical, and the remaining 20 are 

nominal, dichotomous variables that take 

values of 0 or 1. For the construction of our 

model, only the features with numerical 

values were used.  

 

Classification algorithms 

Support Vector Machine (SVM) is one of 

the most widely  used supervised learning 

algorithms, applicable to both Classification 

and Regression tasks. Its primary use lies in 

solving classification problems within the 

field of machine learning. The main 

objective of the SVM algorithm is to identify 

an optimal decision boundary that separates 

an n-dimensional feature space into distinct 

classes, allowing new data points to be 

accurately categorized [5]. This optimal 

boundary is known as a hyperplane. To 

construct the hyperplane, SVM selects 

critical data points, those that exert the 

greatest influence on the boundary’s 

position. These points are referred to as 

support vectors, which is where the 

algorithm gets its name [6]. In Support 

Vector Machine algorithm, kernel functions 

play a crucial role in transforming data into 

higher-dimensional space in order to find the 

optimal hyperplane for separating classes. 

The main types of kernel function [7] 

commonly used are:   

• Linear kernel - Lk, 

• Polynomial kernel - Pk,  

• Radial Basis Function (RBF) or  

Dataset management and 
preparation

Workflow and experiment 
orchestration

Environment specification or 
direct submission of 

containerized applications

Model training execution, 
with support for custom 
container images when 

default runtimes 
are unavailable

Result tracking and 
monitoring tools 

(e.g., TensorBoard)

JupyterLab as an interactive 
development service

Hyperparameter 
instrumentation for 

launching parallel jobs 
across compute nodes
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Gaussian kernel - Gk,  

• Sigmoid kernel - Sk.  

 

EXPERIMENTAL ANALYSIS OF 

CLASSIFICATION ALGORITHMS 

The significant impact of hyper- 

parameters on model performance in most 

machine learning algorithms requires careful 

tuning [10]. Instead of relying on a manual 

trial-and-error approach, which is often 

time-consuming and difficult to reproduce, 

automated hyperparameter optimization 

methods can be employed [11]. These 

methods, based on error estimates through 

resampling in supervised learning, enable 

efficient identification of optimal 

configurations [12].  

As part of this research, a series of 

programs were developed using the Python 

programing language [13], leveraging its 

rich and diverse set of libraries that support 

efficient implementation of machine 

learning algorithms and precise performance 

evaluation. Python was selected for its 

flexibility, readable syntax, and extensive 

support for scientific and engineering 

applications, including libraries such as 

scikit-learn, NumPy, pandas, and time.  

After implementation, the code was 

executed within the Visual Studio 

development environment, which enabled 

detailed monitoring of the model training 

process and measurement of execution time 

for each experiment. Execution time was 

recorded consistently, providing an 

additional dimension of evaluation 

regarding algorithm efficiency and the 

impact of different hyperparameter 

configurations on processing speed.  

In addition to local execution, the same 

code was tested within the FastML-e 

environment, which supports distributed and 

randomized processing. Special attention 

was given to tracking execution time under 

parallel processing conditions, allowing for 

a comparative analysis between manual and 

automated approaches to hyperparameter 

optimization.  

The experiments encompassed all 

relevant hyperparameters of the SVM 

algorithm, focusing on various kernel types: 

linear, polynomial, Gaussian and sigmoid. 

For each kernel, evaluation was conducted 

using two approaches: the first involved, 

while the second employed parallel testing 

of multiple configurations using automated 

optimization techniques. This dual approach 

enabled a comprehensive analysis of the 

influence of individual hyperparameters on 

model performance and facilitated the 

identification of optimal combinations for 

further experimental and applied purposes.  

The results obtained throughout research 

are presented in tabular form to ensure 

clarity and facilitate analysis. 

     It is well known that, regardless of the 

type of model being used, the dataset must 

be divided into two groups: one for the 

training, and the other for the evaluation of 

the model performance. In this case, we 

divided 30% of our data as test set and 70% 

as train set. 

Table 1. presents the results obtained by 

applying the SVM algorithm with different 

kernel functions. Each kernel was used to 

train model separately, and the evaluation 

encompassed metrics such as accuracy, 

precision, recall, F1-score, and execution 

time. 

 

  
Table 1. Comparative performance metrics of 

the SVM algorithm kernels 

  

   Table 2. presents results of four confusion 

matrices and illustrates the classification 

performance of each kernel. These matrices 

reveal that the poorest results are produced 

by the sigmoid kernel. Each matrix displays 

the number of correctly and incorrectly 

classified instances, representing the 

relationships between true positives (TP), 

true negatives (TN), false positives (FP), and 

false negatives (FN) predictions [14]. These 

results clearly show that the sigmoid kernel 

yields the least accurate classification 

outcomes in this experiment. In contrast, the 

linear and Gaussian kernel exhibit the 
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highest precision and stability, making them 

more suitable for binary classification tasks 

in this context.  
               

 

Table 2. Confusion matrices 

 

    Figure 2. presents execution times for the 

SVM algorithm using different kernel 

functions across two computing platforms: a 

regular PC and a high-performance 

computing system (HPC). The values 

expressed in seconds represent the duration 

of model training for each kernel. It is 

evident that HPC platform significantly 

reduces execution time compared to the 

regular PC, particularly the advantages of 

parallel processing and optimized resources 

in high-performance environments. The 

regular PC used in the experiment is 

equipped with a single processor (Intel 

Celeron) and 12 GB of RAM. In contrast, the 

experimental container within the HPC 

environment is configured with four CPUs 

and 8 GB of RAM, enabling parallel 

processing and faster algorithm execution. 

 

 
Fig. 2. Execution time of SVM algorithm based 

on hyperparameter tuning method 
 

    To determine the optimal parameters for 

the SVM algorithm, we applied the build-in 

Grid Search - GridSearchCV and 

Randomized Search (Random Search) - 

RandomSearchCV functions available in the 

scikit-learn Python library  [15], specifically 

within the sklearn.model_selection module. 

The primary purpose of Grid Search 

function is to enable parallel testing of 

parameters across a wide range of values, 

which facilitates the identification of the best 

configuration for model construction. In 

other words, Grid Search is a specialized 

hyperparameter optimization technique that 

exhaustively evaluates all possible 

parameter combinations to find the most 

suitable one [16]. Random Search also tests 

combinations of hyperparameters from 

hyperparameter space to determine the 

optimal subset, where instead of trying all 

possible combinations, Random Search 

randomly selects a specific number of 

combinations from a distribution of 

hyperparameter values. 

 

 
 

Fig 3.Process Flow of the Proposed Method  
 

     Cross-validation is a very important tool 

for model validation in machine learning 

[17]. Cross-validation is used both for tuning 

and evaluating hyperparameters, as well as 

for comparing a set of models to select the 

most suitable one [18]. In this case, we used 

value of 5 for Cross-validation, which means 

that model will iterate learning 5 times, and 

that dataset is divided into 5 parts and 5 

folds. That means that in the first iteration 

we used data from fold 1, in the second 

iteration data from fold 2, and so on. 

However, the technique requires more 

execution time, which makes the ability to 
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use HPC resources extremely important for 

saving time. 

    We tested Lk, Gk, and Pk, also different  

values for C parameter, and execution time 

for each procedure. The results obtained are 

presented in Table 3. The linear kernel 

emerged as the most optimal choice for 

model construction, demonstrating superior 

performance both in the application of the 

Grid Search algorithm and the Random 

Search procedure. Random Search showed 

better execution time. 
 

 
Table 3. Best C parameter value, kernel and 

execution time 

 

    Based on the above results, this approach 

(Figure 3.) is a viable solution to help 

overcome the shortcomings of the SVM 

algorithm hyperparameter testing. 
 

CONCLUSION 

    Results of experiment shown in these 

papers clearly highlight significant 

differences in execution time between the 

standard computing platform and the high-

performance computing (HPC) 

environment. Moreover, the results indicate 

that the optimal solution for building the best 

model to detect phishing websites is the 

application of the SVM algorithm with a 

linear kernel, which achieved the best 

performance. These findings suggest that 

future research should focus on parallel 

parameter testing, which would enable the 

selection of the most effective model for 

detecting phishing websites with significant 

time savings using HPC resources. Such an 

approach would further facilitate the 

deployment of the model for real-time threat 

detection. 
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