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Abstract

Phishing attacks continue to pose a significant threat to digital security, necessitating the development of more
effective detection mechanisms. This study explores the optimization of widely used machine learning classifier,
Support Vector Machines (SVM), for the task of phishing website detection, leveraging the computational
capabilities of Serbia’s National AI Platform. The research focuses on hyperparameter tuning using optimization
techniques executed in high-performance DGX-A100 nodes. By utilizing the FastML Engine within the Codex Al
SUITE, the study achieves scalable orchestration of large-scale experiments, enabling rapid evaluation of
numerous hyperparameter configurations. Results demonstrate substantial improvements in training time,
highlighting the potential of HPC resources to enhance cybersecurity applications and support the strategic

utilization of national Al infrastructure.
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INTRODUCTION

In today’s digital environment, phishing
attacks represent one of the most widespread
and dangerous forms of cyber threats. The
goal of these attacks is to deceive users into
revealing confidential information, most
often through fake websites that mimic
legitimate services. Given the increasing
sophistication of such attacks, traditional
detection methods are  becoming
insufficient, which opens the door for the
application of advanced machine learning
techniques. The most common anti-phishing
technique, blacklisting, is not enough to
protect users from phishing because new
phishing sites appear every day in thousands.

Machine learning classifiers, such as
Support Vector Machines (SVM), have
proven to be effective tools in the automatic
detection of phishing websites. However,
their performance largely depends on the
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proper selection of hyperparameters, which
directly influence the model’s effectiveness.
The process of hyperparameter optimization
can be extremely demanding, especially
when dealing with complex models and
large datasets.

In this context, leveraging the resources
of Serbia’s National AI Platform, including
a supercomputer with high-capacity parallel
processing capabilities, offers a unique
opportunity to accelerate and enhance the
optimization process. This infrastructure
enables the evaluation of a large number of
hyperparameter combinations within a
significantly shorter time frame, thereby
creating space for application of advanced
algorithms such Bayesian optimization and
genetic algorithms.

The aim of this study is to investigate the
impact of  various  hyperparameter
optimization methods on the performance of
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classifier in the task of phishing website
detection. Special emphasis will be placed
on the efficiency, scalability, and accuracy
of the models in the context of using HPC
resources. The results of this research may
contribute to the development of more
robust and faster cybersecurity systems, as
well as to the improved utilization of
domestic Al infrastructure.

To promote the development and
application of artificial intelligence
technologies in public web services as Al-
based phishing websites or similarity
cybersecurity Al-driven products, across the
entire industrial sector of the Republic of
Serbia, and to provide strategic support to
startup companies in building innovative Al-
driven products, the Government of the
Republic of Serbia has established the
National Platform for Artificial Intelligence
(Al Platform) [1].

The establishment and development of
this platform is guided by the goals and
measures outlined in the Serbia’s Artificial
Intelligence Development Strategy for the
periods 2020-2025 and 2025-2030.

The Al Platform is deployed as a high-
performance supercomputing infrastructure
located within The State Data Center in
Kragujevac, which adheres to the highest
reliability standards.

ARCHITECTURE OF THE NATIONAL
Al PLATFORM

The system of the National Al Platform is
built by integrating the computational power
of four DGX-A100 servers, equipped with a
total of 32 NVIDIA A100 GPUs, optimized
for deep learning (DL) and multi-node HPC
simulations. The DGX-A100 servers are
fully dedicated to Al workloads, as the
solution includes separate nodes for system
administration and user access [2].

All servers are interconnected via two
Mellanox InfiniBand HDR networks,
providing high bandwidth and access to a
centralized, optimized Al data management
system. NVIDIA DGX A100 is a universal
platform for the entire Al infrastructure,
from analytics and training to inference. It
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sets a new standard in computational
density, delivering 5 petaFLOPS of
Al performance in 6U unit, replacing
fragmented infrastructure silos with a
unified platform for any Al computing task.

NVIDIA DGX A100 is the world’s first
Al system built on NVIDIA A100 Tensor
Core GPU architecture. By integrating eight
A100 GPUs, the system delivers unmatched
acceleration and is fully optimized for
NVIDIA CUDA-X™software and the
NVIDIA data center stack [2].

Key innovations include [2]:

o TF32 precision, which operates like
FP32 but delivers up to 20x more Al
FLOPS compared to the previous
generation, without requiring code
changes.

e Automatic mixed precision with
FP16, offering an additional 2x
performance boost ~ with just one
extra line of code.

e Memory bandwidth of 1.6 TB/s, a
70% increase over the previous
generation.

e On-chip memory enhancements,
including 40 MB of L2 cache, nearly
7x larger, maximized computational
throughput.

This unprecedented power enables the
fastest  time-to-solution for training,
inference, and analytics, empowering users
to tackle challenges that were previously
impractical or impossible to solve.

Codex Al Suite - FastML

To support large-scale machine learning
workflows, this research utilizes the Codex
Al SUITE - FastML Engine (Atos) [3], an
advanced Data Science and Artificial
Intelligence platform designed for high-
performance Al computing environments.
Its primary goal is to simplify access to
machine learning environments, streamline
model development, and enable deployment
across clusters of Al compute nodes,
particularly within infrastructures such as
DGX POD and SUPERPOD.

FastML Engine abstracts the technical
complexity of supercomputing, allowing
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ML developers to manage the entire
production workflow via command-line
interface or web browser.

and experiment
estration

Fig.1. Block diagram of the machine learning
workflow in HPC environment

The platform is fully integrated with the
NVIDIA DGX software stack and supports
NVIDIA GPU Cloud (NGC) images and
artifacts,  including  optimized @ ML
frameworks and libraries packaged in
Docker containers.

FastML Engine also utilizes a hybrid
orchestration layer capable of interacting
with job schedulers and deploying
interactive sessions on dedicated service
nodes, enabling parallel execution of
workloads alongside code development.

The graphical interface further enhances
usability by allowing researchers to launch
JupyterLab notebook environments
preloaded with selected ML frameworks.
Users can mount datasets directly into their
notebook instances and access their home
directories, with deployment options
available for both service and compute
nodes. A dedicated GUI page facilitates
comprehensive management of JupyterLab
sessions.

This  infrastructure  provides  the
computational foundation for executing
large-scale ~ hyperparameter optimization
experiments and model training tasks,
contributing to the overall efficiency and
reproducibility of the research.

MODEL DEVELOPMENT
CLASSIFFICATION ALGORITHMS
FOR PHISHING DETECTION

For model development, the PhiUSIIL
Phishing URL dataset [4] was used, obtained
“UNITECH — SELECTED PAPERS” vol. 2025
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from the UC Irvine Machine Learning
Repository. This dataset was created by
Arvind Prasad and Shalini Chandra from
Babashaheb Bhimrao Ambedkar University
in 2024, with the aim of supporting the
creation of efficient and effective
frameworks for phishing detection. The
original corpus includes 134,850 legitimate
and 100,945 phishing URLs (a total of
235,795 instances), with no missing values,
extracted from the source code of web pages
and URLs. Label 1 corresponds to legitimate
URL, while label 0 indicates a phishing
URL.

The dataset contains a total of 54 features
(variables), of which 3 are textual, 31 are
numerical, and the remaining 20 are
nominal, dichotomous variables that take
values of 0 or 1. For the construction of our
model, only the features with numerical
values were used.

Classification algorithms

Support Vector Machine (SVM) is one of
the most widely used supervised learning
algorithms, applicable to both Classification
and Regression tasks. Its primary use lies in
solving classification problems within the
field of machine learning. The main
objective of the SVM algorithm is to identify
an optimal decision boundary that separates
an n-dimensional feature space into distinct
classes, allowing new data points to be
accurately categorized [5]. This optimal
boundary is known as a hyperplane. To
construct the hyperplane, SVM selects
critical data points, those that exert the
greatest influence on the boundary’s
position. These points are referred to as
support vectors, which is where the
algorithm gets its name [6]. In Support
Vector Machine algorithm, kernel functions
play a crucial role in transforming data into
higher-dimensional space in order to find the
optimal hyperplane for separating classes.
The main types of kernel function [7]
commonly used are:

e Linear kernel - Lk,

e Polynomial kernel - Pk,

o Radial Basis Function (RBF) or
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Gaussian kernel - Gk,
e Sigmoid kernel - Sk.

EXPERIMENTAL ANALYSIS OF
CLASSIFICATION ALGORITHMS

The significant impact of hyper-
parameters on model performance in most
machine learning algorithms requires careful
tuning [10]. Instead of relying on a manual
trial-and-error approach, which is often
time-consuming and difficult to reproduce,
automated hyperparameter optimization
methods can be employed [11]. These
methods, based on error estimates through
resampling in supervised learning, enable
efficient  identification = of  optimal
configurations [12].

As part of this research, a series of
programs were developed using the Python
programing language [13], leveraging its
rich and diverse set of libraries that support
efficient implementation of machine
learning algorithms and precise performance
evaluation. Python was selected for its
flexibility, readable syntax, and extensive
support for scientific and engineering
applications, including libraries such as
scikit-learn, NumPy, pandas, and time.

After implementation, the code was
executed within the Visual Studio
development environment, which enabled
detailed monitoring of the model training
process and measurement of execution time
for each experiment. Execution time was
recorded  consistently, providing an
additional  dimension of  evaluation
regarding algorithm efficiency and the
impact of different hyperparameter
configurations on processing speed.

In addition to local execution, the same
code was tested within the FastML-e
environment, which supports distributed and
randomized processing. Special attention
was given to tracking execution time under
parallel processing conditions, allowing for
a comparative analysis between manual and
automated approaches to hyperparameter
optimization.

The experiments encompassed all
relevant hyperparameters of the SVM
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algorithm, focusing on various kernel types:
linear, polynomial, Gaussian and sigmoid.
For each kernel, evaluation was conducted
using two approaches: the first involved,
while the second employed parallel testing
of multiple configurations using automated
optimization techniques. This dual approach
enabled a comprehensive analysis of the
influence of individual hyperparameters on
model performance and facilitated the
identification of optimal combinations for
further experimental and applied purposes.

The results obtained throughout research
are presented in tabular formto ensure
clarity and facilitate analysis.

It is well known that, regardless of the
type of model being used, the dataset must
be divided into two groups: one for the
training, and the other for the evaluation of
the model performance. In this case, we
divided 30% of our data as test set and 70%
as train set.

Table 1. presents the results obtained by
applying the SVM algorithm with different
kernel functions. Each kernel was used to
train model separately, and the evaluation
encompassed metrics such as accuracy,
precision, recall, Fl-score, and execution
time.

SVM kernel Precision Recall Fl-score Support
0 Lk Gk, Pk Sk 1.00 1.00 1.000.99 | 1.00 | 1.00 1.00 1.000.99 | 30151
1 1.00 1.00 1.00 403588
Accuracy Lk, Gk, Pk, Sk 1.00 70739
Macro avg Lk, Gk, Pk, Sk 1.00 1.00 100 70739
Weighted avg Lk, Gk, Pk, Sk 1.00 1.00 1.00 70399

Table 1. Comparative performance metrics of
the SVM algorithm kernels

Table 2. presents results of four confusion
matrices and illustrates the classification
performance of each kernel. These matrices
reveal that the poorest results are produced
by the sigmoid kernel. Each matrix displays
the number of correctly and incorrectly
classified instances, representing the
relationships between true positives (TP),
true negatives (TN), false positives (FP), and
false negatives (FN) predictions [14]. These
results clearly show that the sigmoid kernel
yields the least accurate classification
outcomes in this experiment. In contrast, the
linear and Gaussian kernel exhibit the
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highest precision and stability, making them
more suitable for binary classification tasks
in this context.

5WAd kernel Lk | Gl | Pi Lk | Gk | Pk
Positive Negative

Positive 30136 30147 30119 4 15 32

Negative V] 0 0 40588 40588 40588

Table 2. Confusion matrices

Figure 2. presents execution times for the
SVM algorithm using different kernel
functions across two computing platforms: a
regular PC and a high-performance
computing system (HPC). The values
expressed in seconds represent the duration
of model training for each kernel. It is
evident that HPC platform significantly
reduces execution time compared to the
regular PC, particularly the advantages of
parallel processing and optimized resources
in high-performance environments. The
regular PC used in the experiment is
equipped with a single processor (Intel
Celeron) and 12 GB of RAM. In contrast, the
experimental container within the HPC
environment is configured with four CPUs
and 8 GB of RAM, enabling parallel
processing and faster algorithm execution.

SVM algoritam execution time

142.34

114.10

93‘759.95

62.39

100
47.03
50 . 20.37 o
L Pk
0
Lk
HCP

Regular PC
Time difference

mLk mPk mGk

Fig. 2. Execution time of SVM algorithm based
on hyperparameter tuning method

To determine the optimal parameters for
the SVM algorithm, we applied the build-in
Grid Search -  GridSearchCV  and
Randomized Search (Random Search) -
RandomSearchCV functions available in the
scikit-learn Python library [15], specifically
within the sklearn.model selection module.
The primary purpose of Grid Search
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function is to enable parallel testing of
parameters across a wide range of values,
which facilitates the identification of the best
configuration for model construction. In
other words, Grid Search is a specialized
hyperparameter optimization technique that
exhaustively  evaluates all  possible
parameter combinations to find the most
suitable one [16]. Random Search also tests
combinations of hyperparameters from
hyperparameter space to determine the
optimal subset, where instead of trying all
possible combinations, Random Search
randomly selects a specific number of
combinations from a distribution of
hyperparameter values.

PhiUSIIL Phishing U RL dataset

Preprocessing

Train (70%) Test (30%)

Kemel Selection

Optimization

Support Vector Machine
+ Grid Search

Support Vector Machine
+ Random Search

Model Evaluation

Fig 3.Process Flow of the Proposed Method

Cross-validation is a very important tool
for model validation in machine learning
[17]. Cross-validation is used both for tuning
and evaluating hyperparameters, as well as
for comparing a set of models to select the
most suitable one [18]. In this case, we used
value of 5 for Cross-validation, which means
that model will iterate learning 5 times, and
that dataset is divided into 5 parts and 5
folds. That means that in the first iteration
we used data from fold 1, in the second
iteration data from fold 2, and so on.
However, the technique requires more
execution time, which makes the ability to
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use HPC resources extremely important for
saving time.

We tested Lk, Gk, and Pk, also different
values for C parameter, and execution time
for each procedure. The results obtained are
presented in Table 3. The linear kernel
emerged as the most optimal choice for
model construction, demonstrating superior
performance both in the application of the
Grid Search algorithm and the Random
Search procedure. Random Search showed
better execution time.

SVM C Kernel | Time (s)
SVM-grid 10 Lk 7114.95
SVM-random 10 Lk 4560.08

Table 3. Best C parameter value, kernel and
execution time

Based on the above results, this approach
(Figure 3.) is a viable solution to help
overcome the shortcomings of the SVM
algorithm hyperparameter testing.

CONCLUSION
Results of experiment shown in these
papers  clearly  highlight significant

differences in execution time between the
standard computing platform and the high-
performance computing (HPC)
environment. Moreover, the results indicate
that the optimal solution for building the best
model to detect phishing websites is the
application of the SVM algorithm with a
linear kernel, which achieved the best
performance. These findings suggest that
future research should focus on parallel
parameter testing, which would enable the
selection of the most effective model for
detecting phishing websites with significant
time savings using HPC resources. Such an
approach would further facilitate the
deployment of the model for real-time threat
detection.
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