

INTERNATIONAL SCIENTIFIC

CONFERENCE

20-22 November 2025, GABROVO

“UNITECH – SELECTED PAPERS” vol. 2025

Published by Technical University of Gabrovo

ISSN 2603-378X

This is an open access article licensed under

Creative Commons Attribution 4.0 International

doi: www.doi.org/10.70456/..........................

ACCELERATING SVM HYPERPARAMETER TUNING FOR

PHISHING WEBSITE DETECTION USING HIGH-PERFORMANCE

COMPUTING

Biljana Lakić1*, Kristijan Kuk2

1University of Criminal Investigation and Police Studies, Cara Dušana 196 Zemun, Belgrade,

Serbia
2University of Criminal Investigation and Police Studies, Cara Dušana 196 Zemun, Belgrade,

*Corresponding author: biljana.lakic@kpu.edu.rs

Abstract

Phishing attacks continue to pose a significant threat to digital security, necessitating the development of more

effective detection mechanisms. This study explores the optimization of widely used machine learning classifier,

Support Vector Machines (SVM), for the task of phishing website detection, leveraging the computational

capabilities of Serbia’s National AI Platform. The research focuses on hyperparameter tuning using optimization

techniques executed in high-performance DGX-A100 nodes. By utilizing the FastML Engine within the Codex AI

SUITE, the study achieves scalable orchestration of large-scale experiments, enabling rapid evaluation of

numerous hyperparameter configurations. Results demonstrate substantial improvements in training time,

highlighting the potential of HPC resources to enhance cybersecurity applications and support the strategic

utilization of national AI infrastructure.

Keywords: machine learning, classification, high-performance computing, optimization.

INTRODUCTION

In today’s digital environment, phishing

attacks represent one of the most widespread

and dangerous forms of cyber threats. The

goal of these attacks is to deceive users into

revealing confidential information, most

often through fake websites that mimic

legitimate services. Given the increasing

sophistication of such attacks, traditional

detection methods are becoming

insufficient, which opens the door for the

application of advanced machine learning

techniques. The most common anti-phishing

technique, blacklisting, is not enough to

protect users from phishing because new

phishing sites appear every day in thousands.

Machine learning classifiers, such as

Support Vector Machines (SVM), have

proven to be effective tools in the automatic

detection of phishing websites. However,

their performance largely depends on the

proper selection of hyperparameters, which

directly influence the model’s effectiveness.

The process of hyperparameter optimization

can be extremely demanding, especially

when dealing with complex models and

large datasets.

In this context, leveraging the resources

of Serbia’s National AI Platform, including

a supercomputer with high-capacity parallel

processing capabilities, offers a unique

opportunity to accelerate and enhance the

optimization process. This infrastructure

enables the evaluation of a large number of

hyperparameter combinations within a

significantly shorter time frame, thereby

creating space for application of advanced

algorithms such Bayesian optimization and

genetic algorithms.

 The aim of this study is to investigate the

impact of various hyperparameter

optimization methods on the performance of

https://creativecommons.org/licenses/by/4.0/?ref=chooser-v1
http://www.doi.org/10.70456/

“UNITECH – SELECTED PAPERS” vol. 2025

Published by Technical University of Gabrovo

ISSN 2603-378X

This is an open access article licensed under

Creative Commons Attribution 4.0 International

doi: www.doi.org/10.70456/..........................

classifier in the task of phishing website

detection. Special emphasis will be placed

on the efficiency, scalability, and accuracy

of the models in the context of using HPC

resources. The results of this research may

contribute to the development of more

robust and faster cybersecurity systems, as

well as to the improved utilization of

domestic AI infrastructure.

To promote the development and

application of artificial intelligence

technologies in public web services as AI-

based phishing websites or similarity

cybersecurity AI-driven products, across the

entire industrial sector of the Republic of

Serbia, and to provide strategic support to

startup companies in building innovative AI-

driven products, the Government of the

Republic of Serbia has established the

National Platform for Artificial Intelligence

(AI Platform) [1].

The establishment and development of

this platform is guided by the goals and

measures outlined in the Serbia’s Artificial

Intelligence Development Strategy for the

periods 2020-2025 and 2025-2030.

The AI Platform is deployed as a high-

performance supercomputing infrastructure

located within The State Data Center in

Kragujevac, which adheres to the highest

reliability standards.

ARCHITECTURE OF THE NATIONAL

AI PLATFORM

The system of the National AI Platform is

built by integrating the computational power

of four DGX-A100 servers, equipped with a

total of 32 NVIDIA A100 GPUs, optimized

for deep learning (DL) and multi-node HPC

simulations. The DGX-A100 servers are

fully dedicated to AI workloads, as the

solution includes separate nodes for system

administration and user access [2].

All servers are interconnected via two

Mellanox InfiniBand HDR networks,

providing high bandwidth and access to a

centralized, optimized AI data management

system. NVIDIA DGX A100 is a universal

platform for the entire AI infrastructure,

from analytics and training to inference. It

sets a new standard in computational

density, delivering 5 petaFLOPS of

AI performance in 6U unit, replacing

fragmented infrastructure silos with a

unified platform for any AI computing task.

NVIDIA DGX A100 is the world’s first

AI system built on NVIDIA A100 Tensor

Core GPU architecture. By integrating eight

A100 GPUs, the system delivers unmatched

acceleration and is fully optimized for

NVIDIA CUDA-Xtm software and the

NVIDIA data center stack [2].

Key innovations include [2]:

• TF32 precision, which operates like

FP32 but delivers up to 20x more AI

FLOPS compared to the previous

generation, without requiring code

changes.

• Automatic mixed precision with

FP16, offering an additional 2x

performance boost with just one

extra line of code.

• Memory bandwidth of 1.6 TB/s, a

70% increase over the previous

generation.

• On-chip memory enhancements,

including 40 MB of L2 cache, nearly

7x larger, maximized computational

throughput.

This unprecedented power enables the

fastest time-to-solution for training,

inference, and analytics, empowering users

to tackle challenges that were previously

impractical or impossible to solve.

Codex AI Suite - FastML

To support large-scale machine learning

workflows, this research utilizes the Codex

AI SUITE – FastML Engine (Atos) [3], an

advanced Data Science and Artificial

Intelligence platform designed for high-

performance AI computing environments.

Its primary goal is to simplify access to

machine learning environments, streamline

model development, and enable deployment

across clusters of AI compute nodes,

particularly within infrastructures such as

DGX POD and SUPERPOD.

 FastML Engine abstracts the technical

complexity of supercomputing, allowing

https://creativecommons.org/licenses/by/4.0/?ref=chooser-v1
http://www.doi.org/10.70456/

“UNITECH – SELECTED PAPERS” vol. 2025

Published by Technical University of Gabrovo

ISSN 2603-378X

This is an open access article licensed under

Creative Commons Attribution 4.0 International

doi: www.doi.org/10.70456/..........................

ML developers to manage the entire

production workflow via command-line

interface or web browser.

Fig.1. Block diagram of the machine learning

workflow in HPC environment

The platform is fully integrated with the

NVIDIA DGX software stack and supports

NVIDIA GPU Cloud (NGC) images and

artifacts, including optimized ML

frameworks and libraries packaged in

Docker containers.

FastML Engine also utilizes a hybrid

orchestration layer capable of interacting

with job schedulers and deploying

interactive sessions on dedicated service

nodes, enabling parallel execution of

workloads alongside code development.

The graphical interface further enhances

usability by allowing researchers to launch

JupyterLab notebook environments

preloaded with selected ML frameworks.

Users can mount datasets directly into their

notebook instances and access their home

directories, with deployment options

available for both service and compute

nodes. A dedicated GUI page facilitates

comprehensive management of JupyterLab

sessions.

This infrastructure provides the

computational foundation for executing

large-scale hyperparameter optimization

experiments and model training tasks,

contributing to the overall efficiency and

reproducibility of the research.

MODEL DEVELOPMENT

CLASSIFFICATION ALGORITHMS

FOR PHISHING DETECTION

For model development, the PhiUSIIL

Phishing URL dataset [4] was used, obtained

from the UC Irvine Machine Learning

Repository. This dataset was created by

Arvind Prasad and Shalini Chandra from

Babashaheb Bhimrao Ambedkar University

in 2024, with the aim of supporting the

creation of efficient and effective

frameworks for phishing detection. The

original corpus includes 134,850 legitimate

and 100,945 phishing URLs (a total of

235,795 instances), with no missing values,

extracted from the source code of web pages

and URLs. Label 1 corresponds to legitimate

URL, while label 0 indicates a phishing

URL.

The dataset contains a total of 54 features

(variables), of which 3 are textual, 31 are

numerical, and the remaining 20 are

nominal, dichotomous variables that take

values of 0 or 1. For the construction of our

model, only the features with numerical

values were used.

Classification algorithms

Support Vector Machine (SVM) is one of

the most widely used supervised learning

algorithms, applicable to both Classification

and Regression tasks. Its primary use lies in

solving classification problems within the

field of machine learning. The main

objective of the SVM algorithm is to identify

an optimal decision boundary that separates

an n-dimensional feature space into distinct

classes, allowing new data points to be

accurately categorized [5]. This optimal

boundary is known as a hyperplane. To

construct the hyperplane, SVM selects

critical data points, those that exert the

greatest influence on the boundary’s

position. These points are referred to as

support vectors, which is where the

algorithm gets its name [6]. In Support

Vector Machine algorithm, kernel functions

play a crucial role in transforming data into

higher-dimensional space in order to find the

optimal hyperplane for separating classes.

The main types of kernel function [7]

commonly used are:

• Linear kernel - Lk,

• Polynomial kernel - Pk,

• Radial Basis Function (RBF) or

Dataset management and
preparation

Workflow and experiment
orchestration

Environment specification or
direct submission of

containerized applications

Model training execution,
with support for custom
container images when

default runtimes
are unavailable

Result tracking and
monitoring tools

(e.g., TensorBoard)

JupyterLab as an interactive
development service

Hyperparameter
instrumentation for

launching parallel jobs
across compute nodes

https://creativecommons.org/licenses/by/4.0/?ref=chooser-v1
http://www.doi.org/10.70456/

“UNITECH – SELECTED PAPERS” vol. 2025

Published by Technical University of Gabrovo

ISSN 2603-378X

This is an open access article licensed under

Creative Commons Attribution 4.0 International

doi: www.doi.org/10.70456/..........................

Gaussian kernel - Gk,

• Sigmoid kernel - Sk.

EXPERIMENTAL ANALYSIS OF

CLASSIFICATION ALGORITHMS

The significant impact of hyper-

parameters on model performance in most

machine learning algorithms requires careful

tuning [10]. Instead of relying on a manual

trial-and-error approach, which is often

time-consuming and difficult to reproduce,

automated hyperparameter optimization

methods can be employed [11]. These

methods, based on error estimates through

resampling in supervised learning, enable

efficient identification of optimal

configurations [12].

As part of this research, a series of

programs were developed using the Python

programing language [13], leveraging its

rich and diverse set of libraries that support

efficient implementation of machine

learning algorithms and precise performance

evaluation. Python was selected for its

flexibility, readable syntax, and extensive

support for scientific and engineering

applications, including libraries such as

scikit-learn, NumPy, pandas, and time.

After implementation, the code was

executed within the Visual Studio

development environment, which enabled

detailed monitoring of the model training

process and measurement of execution time

for each experiment. Execution time was

recorded consistently, providing an

additional dimension of evaluation

regarding algorithm efficiency and the

impact of different hyperparameter

configurations on processing speed.

In addition to local execution, the same

code was tested within the FastML-e

environment, which supports distributed and

randomized processing. Special attention

was given to tracking execution time under

parallel processing conditions, allowing for

a comparative analysis between manual and

automated approaches to hyperparameter

optimization.

The experiments encompassed all

relevant hyperparameters of the SVM

algorithm, focusing on various kernel types:

linear, polynomial, Gaussian and sigmoid.

For each kernel, evaluation was conducted

using two approaches: the first involved,

while the second employed parallel testing

of multiple configurations using automated

optimization techniques. This dual approach

enabled a comprehensive analysis of the

influence of individual hyperparameters on

model performance and facilitated the

identification of optimal combinations for

further experimental and applied purposes.

The results obtained throughout research

are presented in tabular form to ensure

clarity and facilitate analysis.

 It is well known that, regardless of the

type of model being used, the dataset must

be divided into two groups: one for the

training, and the other for the evaluation of

the model performance. In this case, we

divided 30% of our data as test set and 70%

as train set.

Table 1. presents the results obtained by

applying the SVM algorithm with different

kernel functions. Each kernel was used to

train model separately, and the evaluation

encompassed metrics such as accuracy,

precision, recall, F1-score, and execution

time.

Table 1. Comparative performance metrics of

the SVM algorithm kernels

 Table 2. presents results of four confusion

matrices and illustrates the classification

performance of each kernel. These matrices

reveal that the poorest results are produced

by the sigmoid kernel. Each matrix displays

the number of correctly and incorrectly

classified instances, representing the

relationships between true positives (TP),

true negatives (TN), false positives (FP), and

false negatives (FN) predictions [14]. These

results clearly show that the sigmoid kernel

yields the least accurate classification

outcomes in this experiment. In contrast, the

linear and Gaussian kernel exhibit the

https://creativecommons.org/licenses/by/4.0/?ref=chooser-v1
http://www.doi.org/10.70456/

“UNITECH – SELECTED PAPERS” vol. 2025

Published by Technical University of Gabrovo

ISSN 2603-378X

This is an open access article licensed under

Creative Commons Attribution 4.0 International

doi: www.doi.org/10.70456/..........................

highest precision and stability, making them

more suitable for binary classification tasks

in this context.

Table 2. Confusion matrices

 Figure 2. presents execution times for the

SVM algorithm using different kernel

functions across two computing platforms: a

regular PC and a high-performance

computing system (HPC). The values

expressed in seconds represent the duration

of model training for each kernel. It is

evident that HPC platform significantly

reduces execution time compared to the

regular PC, particularly the advantages of

parallel processing and optimized resources

in high-performance environments. The

regular PC used in the experiment is

equipped with a single processor (Intel

Celeron) and 12 GB of RAM. In contrast, the

experimental container within the HPC

environment is configured with four CPUs

and 8 GB of RAM, enabling parallel

processing and faster algorithm execution.

Fig. 2. Execution time of SVM algorithm based

on hyperparameter tuning method

 To determine the optimal parameters for

the SVM algorithm, we applied the build-in

Grid Search - GridSearchCV and

Randomized Search (Random Search) -

RandomSearchCV functions available in the

scikit-learn Python library [15], specifically

within the sklearn.model_selection module.

The primary purpose of Grid Search

function is to enable parallel testing of

parameters across a wide range of values,

which facilitates the identification of the best

configuration for model construction. In

other words, Grid Search is a specialized

hyperparameter optimization technique that

exhaustively evaluates all possible

parameter combinations to find the most

suitable one [16]. Random Search also tests

combinations of hyperparameters from

hyperparameter space to determine the

optimal subset, where instead of trying all

possible combinations, Random Search

randomly selects a specific number of

combinations from a distribution of

hyperparameter values.

Fig 3.Process Flow of the Proposed Method

 Cross-validation is a very important tool

for model validation in machine learning

[17]. Cross-validation is used both for tuning

and evaluating hyperparameters, as well as

for comparing a set of models to select the

most suitable one [18]. In this case, we used

value of 5 for Cross-validation, which means

that model will iterate learning 5 times, and

that dataset is divided into 5 parts and 5

folds. That means that in the first iteration

we used data from fold 1, in the second

iteration data from fold 2, and so on.

However, the technique requires more

execution time, which makes the ability to

https://creativecommons.org/licenses/by/4.0/?ref=chooser-v1
http://www.doi.org/10.70456/

“UNITECH – SELECTED PAPERS” vol. 2025

Published by Technical University of Gabrovo

ISSN 2603-378X

This is an open access article licensed under

Creative Commons Attribution 4.0 International

doi: www.doi.org/10.70456/..........................

use HPC resources extremely important for

saving time.

 We tested Lk, Gk, and Pk, also different

values for C parameter, and execution time

for each procedure. The results obtained are

presented in Table 3. The linear kernel

emerged as the most optimal choice for

model construction, demonstrating superior

performance both in the application of the

Grid Search algorithm and the Random

Search procedure. Random Search showed

better execution time.

Table 3. Best C parameter value, kernel and

execution time

 Based on the above results, this approach

(Figure 3.) is a viable solution to help

overcome the shortcomings of the SVM

algorithm hyperparameter testing.

CONCLUSION

 Results of experiment shown in these

papers clearly highlight significant

differences in execution time between the

standard computing platform and the high-

performance computing (HPC)

environment. Moreover, the results indicate

that the optimal solution for building the best

model to detect phishing websites is the

application of the SVM algorithm with a

linear kernel, which achieved the best

performance. These findings suggest that

future research should focus on parallel

parameter testing, which would enable the

selection of the most effective model for

detecting phishing websites with significant

time savings using HPC resources. Such an

approach would further facilitate the

deployment of the model for real-time threat

detection.

Acknowledgments: Authors gratefully

acknowledges the support of the Serbian

National AI Platform, whose resources and

infrastructure contributed to the successful

completion of the work. Also, we express

deep gratitude to Arvind Prasad and Shalini

Chandra from Babashaheb Bhimrao

Ambedkar University for their contribution

to our research through The PhiUSIIL

Phishing URL dataset. Their work and the

availability of the dataset were crucial for

the development of our model and the

training process in this paper.

REFERENCE
[1] Nacionalna platforma za veštačku

inteligenciju, “Nacionalna VI

platforma.” Accessed: Oct. 19, 2025.

[Online]. Available: https://www.ai.gov.rs/te

kst/sr/189/nacionalna-vi-platforma.php

[2] NVIDIA, “Introduction to the NVIDIA

DGX A100 System.” Accessed: Oct. 19,

2025.

[Online]. Available: https://docs.nvidia.com/

dgx/dgxa100-user-guide/introduction-to-

dgxa100.html

[3] M. Vizard,

“Atos Launches AI Codex Suite to Accelerat

e AI App Development,” IT Business Edge,

Jun. 2018, Accessed: Oct. 19, 2025.

[Online]. Available: https://www.itbusinesse

dge.com/business-intelligence/atos-

launches-ai-codex-suite-to-accelerate-ai-

app-development/

[4] A. Prasad and S. Chandra, “PhiUSIIL:

A diverse security profile empowered phishi

ng URL detection framework based on simil

arity index and incremental learning,” Comp

ut Secur, vol. 136, p. 103545, Jan. 2024, doi:

10.1016/j.cose.2023.103545.

[5] K. S. Chong and N. Shah,

“Comparison of Naive Bayes and SVM Clas

sification in Grid-

Search Hyperparameter Tuned and Non-

Hyperparameter Tuned Healthcare Stock Ma

rket

Sentiment Analysis,” International Journal

of Advanced Computer Science and Applicat

ions, vol. 13, no. 12, 2022, doi:

10.14569/IJACSA.2022.0131213.

[6] JavaTpoint,

“Support Vector Machine Algorithm,” Java

Tpoint.

[7] N. Guenther and M. Schonlau,

“Support vector machines,” Stata Journal, v

ol. 16, no. 4, 2016, doi:

10.1177/1536867x1601600407.

[8] P. Probst, M. N. Wright, and A.

L. Boulesteix,

https://creativecommons.org/licenses/by/4.0/?ref=chooser-v1
http://www.doi.org/10.70456/
https://www.ai.gov.rs/tekst/sr/189/nacionalna-vi-platforma.php
https://www.ai.gov.rs/tekst/sr/189/nacionalna-vi-platforma.php
https://docs.nvidia.com/dgx/dgxa100-user-guide/introduction-to-dgxa100.html
https://docs.nvidia.com/dgx/dgxa100-user-guide/introduction-to-dgxa100.html
https://docs.nvidia.com/dgx/dgxa100-user-guide/introduction-to-dgxa100.html
https://www.itbusinessedge.com/business-intelligence/atos-launches-ai-codex-suite-to-accelerate-ai-app-development/
https://www.itbusinessedge.com/business-intelligence/atos-launches-ai-codex-suite-to-accelerate-ai-app-development/
https://www.itbusinessedge.com/business-intelligence/atos-launches-ai-codex-suite-to-accelerate-ai-app-development/
https://www.itbusinessedge.com/business-intelligence/atos-launches-ai-codex-suite-to-accelerate-ai-app-development/

“UNITECH – SELECTED PAPERS” vol. 2025

Published by Technical University of Gabrovo

ISSN 2603-378X

This is an open access article licensed under

Creative Commons Attribution 4.0 International

doi: www.doi.org/10.70456/..........................

“Hyperparameters and tuning strategies for

random forest,” 2019. doi:

10.1002/widm.1301.

[10] W. Pannakkong, K. Thiwa-Anont,

K. Singthong,

P. Parthanadee, and J. Buddhakulsomsiri,

“Hyperparameter Tuning of Machine Learni

ng Algorithms Using Response Surface Met

hodology: A Case Study of ANN, SVM, and

DBN,” Math Probl Eng, vol. 2022, 2022, doi:

10.1155/2022/8513719.

[11] E. Elgeldawi, A. Sayed, A. R. Galal, and

A. M. Zaki, “Hyperparameter tuning for

machine learning algorithms used for arabic

sentiment analysis,” Informatics, vol. 8, no.

4, 2021, doi: 10.3390/informatics8040079.

[12] B. Bischl et al.,

“Hyperparameter optimization: Foundations,

 algorithms, best practices, and open challen

ges,” 2023. doi: 10.1002/widm.1484.

[13] S. Raschka, J. Patterson, and C. Nolet,

“Machine learning in python:

Main developments and technology trends in

data science, machine learning, and artificial

 intelligence,” 2020. doi:

10.3390/info11040193.

[14] S. Swaminathan and B. R. Tantri,

“Confusion Matrix-

Based Performance Evaluation Metrics,” Afr

ican Journal of Biomedical Research, vol.

27, pp. 4023–4031, Nov. 2024, doi:

10.53555/AJBR.v27i4S.4345.

[15] F. Pedregosa et al., “Scikit-

learn: Machine learning in Python,” Journal

of Machine Learning Research, vol. 12,

2011.

[16] C. G. Siji George and B. Sumathi,

“Grid search tuning of hyperparameters in ra

ndom forest classifier for customer feedback

sentiment prediction,” International Journal

of Advanced Computer Science and Applicat

ions, vol. 11, no. 9, 2020, doi:

10.14569/IJACSA.2020.0110920.

[17]A. Seraj et al., “Cross-validation,” in

Handbook of HydroInformatics: Volume I:

Classic Soft-Computing Techniques, 2022.

doi: 10.1016/B978-0-12-821285-1.00021-X.

[18] L. A. Yates, Z. Aandahl, S. A. Richards,

and B. W. Brook, “Cross validation for model

selection: A review with examples from

ecology,” Ecol Monogr, vol. 93, no. 1, 2023,

doi: 10.1002/ecm.1557.

https://creativecommons.org/licenses/by/4.0/?ref=chooser-v1
http://www.doi.org/10.70456/

