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Abstract 

This study presents a holistic analysis of radial shaft seals by means of 3D finite element analysis (FEA). Special 

emphasis is given to the sealing edge, examining its complex behavior under operating conditions, and including 

the surface roughness profile on the microscale for detailed 3D model simulation. In addition, the underlying 

equations of hyperelastic material models, which are important for appropriately simulating the elastomeric parts 

of the seal, are discussed to give a sound mathematical foundation to the simulations. This encompasses thorough 

discussions on boundary conditions and mathematical models necessary for replicating the complicated defor-

mation and contact mechanics of the sealing interface. The tangential distortion of the sealing edge, an important 

factor determining sealing performance, is examined using multiscale models linking macroscopic seal geometry 

to microscopic surface roughness. 

Keywords: radial shaft seal, FEA, distortion. 

INTRODUCTION 

Radial shaft seals, also referred to as ra-

dial lip seals, are basic elements widely used 

in a variety of mechanical and automotive 

engineering applications. Their main pur-

pose is to create a strong barrier, withstand-

ing fluid exchange at shaft passages and 

sealing effectively against fluid leakage, 

while also keeping out external contami-

nants like dirt and dust from important me-

chanical components. These seals have vari-

ous benefits, such as their inexpensiveness, 

low space demands, simplicity of installa-

tion and ability to seal a wide range of appli-

cations with different operating conditions. 

Typically, a radial lip seal consists of an 

elastomeric body, usually made from mate-

rials such as nitrile butadiene rubber, polyu-

rethane or fluoroelastomer, bonded to a me-

tallic case – Fig.1. The construction has one 

or more elastomeric lips, commonly garter 

spring-supported, that press radially against 

the rotating shaft. The synergy of lip defor-

mation and spring extension provides con-

stant contact with the shaft, ensuring an ef-

fective seal. In the static situation, the inter-

ference between the sealing ring's inner di-

ameter and the shaft and the spring load push 

the sealing edge against the shaft, guarantee-

ing static tightness. Under dynamic opera-

tion conditions, the relative motion of the ro-

tating shaft causes a thin hydrodynamic lu-

bricating film to form between the seal lip 

and the shaft surface, which is vital for min-

imizing frictional forces and limiting the 

contact temperatures. The lubricating film 

facilitates the reverse pumping effect, 

whereby fluid entering the sealing gap is 

pumped back from the air side to the fluid 

side with the result that the seal is in a dy-

namic leak-tight state. The asymmetrical 

configuration of the sealing element has the 

effect of further promoting this reverse 

pumping effect. The contact stress distribu-

tion also has asymmetric shape which can be 
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described with the distance Lair (from the be-

ginning of the contact on the air side to the 

maximal stress value) and Loil (from maxi-

mal stress value until end of the contact from 

oil side). Typically Lair > Loil the ratio  is de-

fined S = Loil / Lair such that S < 1 correspond 

to back pumping sealing edge. 

 In spite of several decades of develop-

ments giving rise to significant empirical im-

provements and sophisticated designs, prob-

lems still persist, particularly in applications 

involving high pressures, which can greatly 

increase the mechanical and thermal stresses 

on the sealing lip. The trade-off between 

leak-free performance and the need for a 

long service life remains a critical factor 

since a slight amount of leakage can, on oc-

casions, improve lubrication and increase 

the operating life of the seal. 

The complex interaction between these 

scales is essential for describing the tribolog-

ical performance and sealing mechanisms of 

radial shaft seals, with regard to the micro-

mechanical contact deformations experi-

enced during shaft rotation [1]. A multiscale 

strategy is necessary to accurately describe 

the large macroscopic deformations due to 

the hyperelastic material behavior of elasto-

mers, in conjunction with microscopic tan-

gential distortions of the sealing edge sur-

face within the contact area [2]. This encom-

passes the combination of numerical studies 

with experimental observations, such as 

those using a hollow glass shaft for in situ 

visual contact analyses, to verify the com-

plex phenomena experienced at the sealing 

interface. From this basis, the application of 

finite element analysis becomes essential for 

calculating both the macroscopic defor-

mation of the seal and the microscopic dis-

tortion of the sealing edge surface rough-

ness. Numerical analyses, in contrast to ex-

perimental test rigs, are not subject to exter-

nal disturbances, enabling focused studies of 

various influences on the sealing mecha-

nism. This permits exact investigations into 

parameters such as contact pressure distribu-

tion and tangential displacement on a micro-

scale, critical for predicting seal perfor-

mance and lifetime. The strong computa-

tional power of FEA allows for a close ex-

amination of elastohydrodynamic and ther-

mos-elastohydrodynamic behaviors, pro-

gressing from classical axisymmetric as-

sumptions to include three-dimensional non-

axisymmetric effects that play an important 

role in lip deformation and sealing integrity 

[3]. This in-depth analysis is continued in 

understanding the impact of wear on the per-

formance of radial lip seals, using numerical 

simulations to compare different sealing 

edge wear states [4]. This is especially appli-

cable considering that the surface roughness 

exposed to the lubricant and shaft in a lip 

seal is in a highly compressed state, requir-

ing models capable of deforming surface 

Fig. 1. (A) Components of the radial shaft seal (B) Sealing edge distortion. 
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roughness according to real radial lip seal 

data [5]. 

The transfer of measured wear states from 

experimental investigations to 3D multi-

scale models enables the simulation of both 

macroscopic deformation of the whole radial 

lip seal and microscopic deformations within 

the contact area between the sealing edge 

and the shaft surface. Thus, numerical meth-

odologies, e.g. mixed elastohydrodynamic 

lubrication models, are commonly utilized to 

investigate the complicated sealing behavior 

by coupling hydrodynamic lubrication, as-

perity contact and deformation analyses 

through iterative computational steps [6]. 

This enables gaining a holistic understand-

ing of the complicated interaction between 

fluid mechanics and solid mechanics, result-

ing in more precise predictions of seal per-

formance and lifetime [7].  

 The current study presents a new inter-

pretation of the 3D finite element simulation 

approach by Grün et al [3]. The numerical 

implementation includes a self-developed 

approach for the finite-element discretiza-

tion of the seal. A new refinement approach 

is presented for the 3D mesh of the sealing 

edge as well. The FEA results for the sealing 

edge distortion and contact stress are inter-

preted in terms of the newly introduced S 

value characterizing the pumping perfor-

mance of the seal. 

EXPOSITION 

This section outlines the methodologies 

used for 3D finite element analyses of radial 

shaft seals, highlighting the computational 

methods and material models used. A main 

emphasis is placed on the hyperelastic con-

stitutive models required to realistically de-

scribe the elastomeric components, with a 

clear explanation of the meshing techniques, 

especially for the all-important sealing edge. 

The methodology also includes the use of 

special contact algorithms and the applica-

tion of boundary conditions needed to model 

the realistic operating environment of the 

seal. For example, an axisymmetric 2D 

model may be created within commercial 

FEA packages, assuming isotropic and ho-

mogeneous material properties for compo-

nents such as the steel frame and shaft (line-

arly elastic) and the elastomeric ring (repre-

sented as a Mooney-Rivlin material). On the 

other hand, 3D models are used to capture 

non-axisymmetric effects, e.g., those caused 

by shaft eccentricity or dynamic operating 

conditions, which have a major impact on 

contact pressure distribution and sealing per-

formance. These 3D models can include ad-

vanced modeling techniques required to re-

alistically capture complicated deformation 

patterns and assess the effects of such distor-

tions on the behavior of the seal under dif-

ferent operating conditions as described by 

the Kammüller functioning hypothesis [8]. 

In particular, the FEA approach enables in-

cluding Kammüller distortion hypothesis 

and  the creation of rough sealing edge sur-

faces, facilitating the investigation of micro-

scopic effects in the sealing contact by map-

ping measured wear states into the 3D multi-

scale model. In addition, the use of hypere-

lastic material models, e.g., the Mooney-Ri-

vlin or Ogden models, is essential to accu-

rately capture the large strain behavior of the 

elastomeric seal material under operational 

loads, which differs considerably from linear 

elastic behavior. These models, widely 

available in commercial FEA software pack-

ages such as Abaqus and ANSYS, are vital 

to precisely predict the material response of 

the elastomer under different loading scenar-

ios, maintaining the fidelity of the simulation 

results. 

Mathematical models for FEA 

The description and solution of large hy-

perelastic deformations in radial shaft seals 

requires a fundamental understanding of 

elasticity theory, hyperelastic material mod-

els and mathematical formulation and dis-

cretization.  

The stress state of an element can be de-

scribed by the stress tensor [9]. 
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Here, normal stresses 𝜎𝑖𝑗 and shear stresses 

𝜏𝑖𝑗 are differentiated from each other. 

Stresses on a body lead to deformations. In 

this case, strains 𝜀𝑖𝑗 and slip 𝛾𝑖𝑗 can be dis-

tinguished. Analogous to the stress tensor, 

the strain tensor for infinitesimal displace-

ments 𝑢𝑥, 𝑢𝑦 and 𝑢𝑧 is thus  
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Large deformations can be described, as in 

[10], with the so-called Cauchy-Green ten-

sor 
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The principal strain described from a 

stretch ratio  𝜆1, 𝜆2 and 𝜆3 results from the 

eigenvalues 𝜆1
2, 𝜆2

2 and 𝜆3
2. Using the invari-

ants, the deformation state can be quantita-

tively characterized independently of the co-

ordinate system. Thus, the first invariant 

2 2 2

1 1 2 3( )I Spur   = = + +C  (4) 

the change in length of the space diagonal 

spanned by the eigenvalues. The second in-

variant 

2 2 2 2 2 2

2 1 2 2 3 1 3I      = + + (5) 

describes the change of the surface and the 

third invariant the volume change. 

2 2 2

3 1 2 3det( )I   = =C   (6) 

Material models or constitutive laws de-

scribe the mechanical behavior of a material. 

Material models link stresses with strains. 

Stress-strain curves from experiments are 

used to characterize the material behavior. 

Uniaxial, equiaxial, and biaxial tests can be 

distinguished for elastomers. Fig. 2. shows 

two examples of typical material behavior.  

Fig. 2. Linear and nonlinear material behavior 

One of the simplest constitutive laws is 

Hooke's law [9]. This results in the linear re-

lationship between the triaxial stress state 

and the resulting strain state via the stiffness 

or elasticity tensor E: 

E =    (7) 

Hooke's law is only valid for small strains 

and is therefore only partially suitable for de-

scribing the material behavior of elastomer 

materials. The large elastic deformations of 

elastomers lead to geometric nonlinearities, 

which is why the relationship between stress 

𝜎 and strain 𝜀 cannot be described using 

equation (7). The mechanical behavior of 

elastomer components is often described us-

ing hyperelastic material models. These are 

time-independent material models [11, 12, 
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13], and can be used to approximate nonlin-

ear-elastic and incompressible material be-

havior in quasi-static considerations. 

An alternative approach to describing the 

relationship between stress and strain is the 

concept of strain energy density. If one re-

stricts oneself to the linear relationship ac-

cording to equation (7), the volume-specific 

strain energy can be described by  

2

i
0

1
Π d

2



  = =E E  (8) 

In the stress-strain diagram shown in  

Fig. 2., the strain energy corresponds to the 

area between the Hooke's line and the ab-

scissa. Detailed information on the deriva-

tion can be found in [10-13]. 

To describe the nonlinear material behav-

ior of elastomers, we exploit the fact that, in 

principle, any mathematical function can be 

represented by a polynomial. Accordingly, 

the strain energy can be expressed as a poly-

nomial in the invariants of the Cauchy-

Green tensor as described by 

( ) ( )i 1 2

1

Π 3 3
n

i j

ij

i j

C I I
+ =

= − − (9) 

where Cij is a material parameter and n is the 

degree of order of the polynomial. A fre-

quently used hyperelastic material model is 

the Mooney-Rivlin model according to [14, 

15], where the strain energy density is deter-

mined by a polynomial of degree n = 1 ac-

cording to equation (9). 

( ) ( )i 10 1 01 2Π 3 3C I C I= − + − (10) 

A special case of the Mooney-Rivlin 

model is the Neo-Hooke model, where 

C01 = 0 and equation (10) is simplified to 

( )i 10 1Π 3C I= −  (11) 

Both the Mooney-Rivlin model from 

equation (10) and the Neo-Hooke model 

from equation (11) neglect the inflection  

point in the stress-strain curve. The Yeoh 

model according to [16] is formulated non-

linearly in the first invariant I1 and results in 

( ) ( )

( )

2

i 10 1 20 1

3

30 1

Π 3 3

3

C I C I

C I

= − + − +

+ −
(12) 

This allows the inflection point in the 

stress-strain curve to be described. The ad-

vantage of the Yeoh model and the Neo-

Hooke model is that they only depend on the 

first invariant I1. Therefore, considering one 

type of loading is sufficient.  

The finite element method (FEM) is an 

approximate method for solving boundary 

value problems for partial differential equa-

tions. It is primarily used for field problems 

in heat conduction, fluid mechanics, electro-

magnetics and acoustics, but also primarily 

for structural mechanics problems. A de-

tailed description is omitted below and ref-

erence is made to widely used standard 

works [17, 18, 19]. For further explanations 

on the application of FEM in the calculation 

of elastomer components, reference is made 

to [20, 21]. 

A general problem in the calculation of 

physical field problems is that an analytical 

solution exists for only a very few computa-

tional domains. The basic idea of FEM, as 

well as other approximation methods, is the 

spatial subdivision or discretization of an ar-

bitrarily shaped domain into geometrically 

simple sub-fields, so-called finite elements. 

These finite elements are connected to each 

other via points also referred to as nodes. In 

this way, for example, a real, elastic contin-

uum with an infinite number of degrees of 

freedom can be transformed into a discrete 

system with a finite number of degrees of 

freedom. The behavior of the field functions 

within the elements can be approximated by 

so-called form or shape functions. 

For any elastic body, the total potential is 

generally calculated from the balance of in-

ternal Πi and external potential Πа as 
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The stress tensor from equation (1) and 

the strain tensor from equation (2) are con-

verted into the vectorial notation 𝜎̃ and 𝜀̃ us-

ing, for example, Voigt’s notation. The so-

called stress or traction vector t = σT ∙ n con-

tains the area-related forces and f the vol-

ume-related forces. According to the princi-

ple of virtual displacement, virtual work is 

Ω

Ω
Ω Ω

Π Π Π dΩ
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where 𝛿 means an infinitesimal change of 

the potentials with an infinitesimal change of 

the displacements u.  

The above explanations are intended to 

introduce the basic approach of FEM and are 

therefore limited to linear problems. 

The final form of the equations used in 

FEA is  

Ψ(u) (u)u 0ˆˆ ˆ ˆ f= − =K (15) 

Here, the stiffness matrix K depends on the 

initially unknown displacement vector 𝑢̂, 

which requires iterative solution methods.  

Mesh Approach for 3D FEA of a Radial 

Shaft Seal (RSS) 

For the purposes of the current paper a 

0.1° 3D segment of RSS is used which is 

transformed to finite element mesh consist-

ing of different sizes of each element. Fig. 3. 

presents the mesh structure with 5 groups of 

mesh elements. In total, the FEM counts 

290000 nodes and 270000 finite elements. 

The coarse bulk mesh is denoted as region 5 

and includes the bigger part of the model far 

from the sealing edge with average dimen-

sion of elements 0.2 mm to 8 µm. Getting 

closer to the sealing edge there are two tran-

sition groups 4 - mesh transition 6 to 2 µm 

and 3 - mesh transition 2 to 0.7 µm. А tran-

sition element structure is shown on Fig. 4., 

created using isoparametric element ap-

proach - random physical elements coordi-

nates to be transformed in natural coordi-

nates and vice versa from one element to 

thirteen smaller elements created. Group 2 is 

interspace between sealing edge and mesh 

transition 3 with element size оf 0.0005 mm. 

The last group 1 is scoping the target zone 

Fig. 3. 3D mesh structure of RSS sealing edge. 
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which is the exact sealing edge which after-

words is in contact with the shaft. The rough-

ness structure is based on Schallamach [22] 

who examined the contact of a compliant 

rubber specimen with a rigid glass counter-

part. He concluded that the micro-asperities 

of the rough rubber surface orient perpendic-

ularly to the direction of movement due to 

shear stresses, creating detachment waves. 

The waves in the current case are orientated 

along the shaft axis with Rz = 1.605 µm. The 

surface micro-asperities are generated so 

that when the segment of 0.1° is patterned 

around the shaft/seal axis, there is a perfect 

matching between the end side of one seg-

ment to the beginning side of the next seg-

ment, which is a good prerequisite for fur-

ther EHL or CFD analysis.  

Fig. 4. 3D transition mesh element structure 
Problem Statement 

used. The part has a nominal inner diameter 

of d = 50 mm, and its elastomeric sealing 

part is made of nitrile butadiene rubber 

Fig. 5. (A) Stress Von-Mises (B) Contact pressure 

For the sake of the current study, a typical 

geometry of RSS type ТRA 50 x 65 x 7, pro-

vided by Trelleborg Sealing Solutions, was 
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(NBR) with a hardness of 75 Shore A. Fur-

thermore, the parameter C10, assessed for the 

Neo-Hookean material model used for the 

FEA, was found to be 1.556 MPa value for 

ambient temperature. The shaft is considered 

a smooth rigid body, while the contact be-

tween the sealing edge and the shaft is de-

fined as a node-to-surface pure penalty con-

tact in the commercial software Abaqus. A 

constant coefficient of friction (COF) of 0.3 

is defined for the seal-shaft contact. Cyclic 

symmetry boundary condition is applied on 

both sides of the seal cross section so that the 

distortion effect can be taken into account in 

the final outcome. 

Results 

The following results are obtained based 

on the previously presented FEA model. 

Fig. 5. and Fig. 6. show the von Mises stress 

and the contact pressure distribution be-

tween the sealing edge and the shaft. The 

contact stress denotes a contact bandwidth of 

0.04 mm. The contact bandwidth – axial 

width of the contact – lies well within the ex-

pected range for a RSS in the new state after 

production. Both the highest von Mises 

stress and contact pressure are located at the 

oil side end of the contact bandwidth. The 

average stress range is approximately 2.5 

MPa. The contact pressure values are about 

4.5 MPa.  

Fig. 6. (A) von Mises Stress 

(B) Contact pressure. 

The radial load for the simulated segment is 

0.0029 N. This equals a total contact load for 

the complete seal of 10.44 N, valid for the 

defined operating temperature of 50 °C. Due 

to the deformations of the soft elastomer as-

perities onto the shaft, following the radial 

Fig. 7. Contact stress and gap height distribution 
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load from geometric overlap and the spring 

energizer, the contact area percolates, mean-

ing that an uninterrupted contact area be-

tween the sealing edge and the shaft is 

formed in circumferential direction. 

A contour plot diagram of the FEA results 

with cross-sectional view of mean, maximal 

and minimal contact stress and gap height 

distributions is shown in Fig. 7. The pre-

sented results offer an additional view on the 

distortion of the sealing edge as a result of 

the dynamic friction between the sealing 

edge and the shaft. Long tilted channels are 

formed on both sides of the contact stress 

apex. Due to the asymmetric pressure distri-

bution, the tilted channels differ in length 

such that the air side channels are 3 times 

longer than the oil side ones. This observa-

tion correlates well with the previously in-

troduced S value which amounts to 0.3 in the 

current case. This corresponds to 70% safety 

margin for the new state of the sealing edge 

after production. It should be noted that after 

break-in and with continuous wear during 

the lifetime of the seal, the S value is ex-

pected to increase.   

CONCLUSION 

This study presents a numerical method 

for performing structural analyses of radial 

shaft seals. There is a detailed description of 

the creation of a three-dimensional multi-

scale model for the purpose of simulating the 

microscopic interaction in the contact region 

between the sealing edge and the shaft sur-

face. A new mesh generation technique is 

developed and applied. Material properties 

and boundary conditions used in the study 

are described. A numerical method is used to 

generate rough surfaces on the sealing edge. 

The results shed light on the micromechani-

cal contact deformations in radial lip seals. 

Additionally, this article discusses the rota-

tion-induced deformations of the shaft. As 

such, the tangential distortions of the sealing 

edge surface in the circumferential direction, 

which had been determined previously by 

means of optical investigations, are corrobo-

rated. With this confirmation, it becomes 

possible to set up a relationship between the 

pressure distribution and the local tangential 

deformation of the sealing contact for ideally 

smooth as well as rough surfaces. The seal-

ing edge distortion principle set forth by 

Kammüller is thus numerically verified. The 

obtained results set the basis for the analysis 

of hydrodynamic effects within the sealing 

gap. As such, the methodology presented 

forms the basis for an in-depth analysis of 

the lubrication and sealing behavior charac-

teristics of radial lip seals. 
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